TY - GEN A1 - Korup, Oliver T1 - Bayesian geomorphology T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The rapidly growing amount and diversity of data are confronting us more than ever with the need to make informed predictions under uncertainty. The adverse impacts of climate change and natural hazards also motivate our search for reliable predictions. The range of statistical techniques that geomorphologists use to tackle this challenge has been growing, but rarely involves Bayesian methods. Instead, many geomorphic models rely on estimated averages that largely miss out on the variability of form and process. Yet seemingly fixed estimates of channel heads, sediment rating curves or glacier equilibrium lines, for example, are all prone to uncertainties. Neighbouring scientific disciplines such as physics, hydrology or ecology have readily embraced Bayesian methods to fully capture and better explain such uncertainties, as the necessary computational tools have advanced greatly. The aim of this article is to introduce the Bayesian toolkit to scientists concerned with Earth surface processes and landforms, and to show how geomorphic models might benefit from probabilistic concepts. I briefly review the use of Bayesian reasoning in geomorphology, and outline the corresponding variants of regression and classification in several worked examples. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1348 KW - Bayes’ rule KW - probability KW - uncertainty KW - prediction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-539892 SN - 1866-8372 IS - 1 ER - TY - THES A1 - Schröter, Kai T1 - Improved flood risk assessment BT - new data sources and methods for flood risk modelling N2 - Rivers have always flooded their floodplains. Over 2.5 billion people worldwide have been affected by flooding in recent decades. The economic damage is also considerable, averaging 100 billion US dollars per year. There is no doubt that damage and other negative effects of floods can be avoided. However, this has a price: financially and politically. Costs and benefits can be estimated through risk assessments. Questions about the location and frequency of floods, about the objects that could be affected and their vulnerability are of importance for flood risk managers, insurance companies and politicians. Thus, both variables and factors from the fields of hydrology and sociol-economics play a role with multi-layered connections. One example are dikes along a river, which on the one hand contain floods, but on the other hand, by narrowing the natural floodplains, accelerate the flood discharge and increase the danger of flooding for the residents downstream. Such larger connections must be included in the assessment of flood risk. However, in current procedures this is accompanied by simplifying assumptions. Risk assessments are therefore fuzzy and associated with uncertainties. This thesis investigates the benefits and possibilities of new data sources for improving flood risk assessment. New methods and models are developed, which take the mentioned interrelations better into account and also quantify the existing uncertainties of the model results, and thus enable statements about the reliability of risk estimates. For this purpose, data on flood events from various sources are collected and evaluated. This includes precipitation and flow records at measuring stations as well as for instance images from social media, which can help to delineate the flooded areas and estimate flood damage with location information. Machine learning methods have been successfully used to recognize and understand correlations between floods and impacts from a wide range of data and to develop improved models. Risk models help to develop and evaluate strategies to reduce flood risk. These tools also provide advanced insights into the interplay of various factors and on the expected consequences of flooding. This work shows progress in terms of an improved assessment of flood risks by using diverse data from different sources with innovative methods as well as by the further development of models. Flood risk is variable due to economic and climatic changes, and other drivers of risk. In order to keep the knowledge about flood risks up-to-date, robust, efficient and adaptable methods as proposed in this thesis are of increasing importance. N2 - Flüsse haben seit jeher ihre Auen überflutet. In den vergangenen Jahrzehnten waren weltweit über 2,5 Milliarden Menschen durch Hochwasser betroffen. Auch der ökonomische Schaden ist mit durchschnittlich 100 Milliarden US Dollar pro Jahr erheblich. Zweifelsohne können Schäden und andere negative Auswirkungen von Hochwasser vermieden werden. Allerdings hat dies einen Preis: finanziell und politisch. Kosten und Nutzen lassen sich durch Risikobewertungen abschätzen. Dabei werden in der Wasserwirtschaft, von Versicherungen und der Politik Fragen nach dem Ort und der Häufigkeit von Überflutungen, nach den Dingen, die betroffen sein könnten und deren Anfälligkeit untersucht. Somit spielen sowohl Größen und Faktoren aus den Bereichen der Hydrologie und Sozioökonmie mit vielschichtigen Zusammenhängen eine Rolle. Ein anschauliches Beispiel sind Deiche entlang eines Flusses, die einerseits in ihrem Abschnitt Überflutungen eindämmen, andererseits aber durch die Einengung der natürlichen Vorländer den Hochwasserabfluss beschleunigen und die Gefährdung für die Anlieger flussab verschärfen. Solche größeren Zusammenhänge müssen in der Bewertung des Hochwasserrisikos einbezogen werden. In derzeit gängigen Verfahren geht dies mit vereinfachenden Annahmen einher. Risikoabschätzungen sind daher unscharf und mit Unsicherheiten verbunden. Diese Arbeit untersucht den Nutzen und die Möglichkeiten neuer Datensätze für eine Verbesserung der Hochwasserrisikoabschätzung. Es werden neue Methoden und Modelle entwickelt, die die angesprochenen Zusammenhänge stärker berücksichtigen und auch die bestehenden Unsicherheiten der Modellergebnisse beziffern und somit die Verlässlichkeit der getroffenen Aussagen einordnen lassen. Dafür werden Daten zu Hochwasserereignissen aus verschiedenen Quellen erfasst und ausgewertet. Dazu zählen neben Niederschlags-und Durchflussaufzeichnungen an Messstationen beispielsweise auch Bilder aus sozialen Medien, die mit Ortsangaben und Bildinhalten helfen können, die Überflutungsflächen abzugrenzen und Hochwasserschäden zu schätzen. Verfahren des Maschinellen Lernens wurden erfolgreich eingesetzt, um aus vielfältigen Daten, Zusammenhänge zwischen Hochwasser und Auswirkungen zu erkennen, besser zu verstehen und verbesserte Modelle zu entwickeln. Solche Risikomodelle helfen bei der Entwicklung und Bewertung von Strategien zur Minderung des Hochwasserrisikos. Diese Werkzeuge ermöglichen darüber hinaus Einblicke in das Zusammenspiel verschiedener Faktoren sowie Aussagen zu den zu erwartenden Folgen auch von Hochwassern, die das bisher bekannte Ausmaß übersteigen. Diese Arbeit verzeichnet Fortschritte in Bezug auf eine verbesserte Bewertung von Hochwasserrisiken durch die Nutzung vielfältiger Daten aus unterschiedlichen Quellen mit innovativen Verfahren sowie der Weiterentwicklung von Modellen. Das Hochwasserrisiko unterliegt durch wirtschaftliche Entwicklungen und klimatische Veränderungen einem steten Wandel. Um das Wissen über Risiken aktuell zu halten sind robuste, leistungs- und anpassungsfähige Verfahren wie sie in dieser Arbeit vorgestellt werden von zunehmender Bedeutung. T2 - Verbesserte Hochwasserrisikobewertung: Neue Datenquellen und Methoden für die Risikomodellierung KW - flood KW - risk KW - vulnerability KW - machine learning KW - uncertainty KW - Hochwasser KW - Risiko KW - Vulnerabilität KW - Maschinelles Lernen KW - Unsicherheiten Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-480240 ER -