TY - JOUR A1 - Grau, José Horacio A1 - Hackl, Thomas A1 - Koepfli, Klaus-Peter A1 - Hofreiter, Michael T1 - Improving draft genome contiguity with reference-derived in silico mate-pair libraries JF - GigaScience N2 - Background Contiguous genome assemblies are a highly valued biological resource because of the higher number of completely annotated genes and genomic elements that are usable compared to fragmented draft genomes. Nonetheless, contiguity is difficult to obtain if only low coverage data and/or only distantly related reference genome assemblies are available. Findings In order to improve genome contiguity, we have developed Cross-Species Scaffolding—a new pipeline that imports long-range distance information directly into the de novo assembly process by constructing mate-pair libraries in silico. Conclusions We show how genome assembly metrics and gene prediction dramatically improve with our pipeline by assembling two primate genomes solely based on ∼30x coverage of shotgun sequencing data. KW - genome assembly KW - mate-pairs KW - in silico KW - scaffolding KW - shotgun sequencing Y1 - 2018 U6 - https://doi.org/10.1093/gigascience/giy029 SN - 2047-217X VL - 7 IS - 5 SP - 1 EP - 6 PB - Oxford University Press CY - Oxford ER - TY - GEN A1 - Grau, José Horacio A1 - Hackl, Thomas A1 - Koepfli, Klaus-Peter A1 - Hofreiter, Michael T1 - Improving draft genome contiguity with reference-derived in silico mate-pair libraries T2 - GigaScience N2 - Background Contiguous genome assemblies are a highly valued biological resource because of the higher number of completely annotated genes and genomic elements that are usable compared to fragmented draft genomes. Nonetheless, contiguity is difficult to obtain if only low coverage data and/or only distantly related reference genome assemblies are available. Findings In order to improve genome contiguity, we have developed Cross-Species Scaffolding—a new pipeline that imports long-range distance information directly into the de novo assembly process by constructing mate-pair libraries in silico. Conclusions We show how genome assembly metrics and gene prediction dramatically improve with our pipeline by assembling two primate genomes solely based on ∼30x coverage of shotgun sequencing data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 477 KW - genome assembly KW - mate-pairs KW - in silico KW - scaffolding KW - shotgun sequencing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419225 ER - TY - JOUR A1 - Hofreiter, Michael A1 - Hartmann, Stefanie T1 - Reconstructing protein-coding sequences from ancient DNA JF - Odorant binding and chemosensory proteins N2 - Obtaining information about functional details of proteins of extinct species is of critical importance for a better understanding of the real-life appearance, behavior and ecology of these lost entries in the book of life. In this chapter, we discuss the possibilities to retrieve the necessary DNA sequence information from paleogenomic data obtained from fossil specimens, which can then be used to express and subsequently analyze the protein of interest. We discuss the problems specific to ancient DNA, including mis-coding lesions, short read length and incomplete paleogenome assemblies. Finally, we discuss an alternative, but currently rarely used approach, direct PCR amplification, which is especially useful for comparatively short proteins. KW - re-sequencing KW - mapping KW - genome assembly KW - targeted assembly KW - SRAssembler KW - ancient DNA KW - reference sequence KW - paleogenomics Y1 - 2020 SN - 978-0-12-821157-1 U6 - https://doi.org/10.1016/bs.mie.2020.05.008 SN - 0076-6879 VL - 642 SP - 21 EP - 33 PB - Academic Press, an imprint of Elsevier CY - Cambridge, MA. ER -