TY - JOUR A1 - Mehner, Thomas A1 - Attermeyer, Katrin A1 - Brauns, Mario A1 - Brothers, Soren A1 - Hilt, Sabine A1 - Scharnweber, Kristin A1 - Dorst, Renee Minavan A1 - Vanni, Michael J. A1 - Gaedke, Ursula T1 - Trophic transfer efficiency in lakes JF - Ecosystems N2 - Trophic transfer efficiency (TTE) is usually calculated as the ratio of production rates between two consecutive trophic levels. Although seemingly simple, TTE estimates from lakes are rare. In our review, we explore the processes and structures that must be understood for a proper lake TTE estimate. We briefly discuss measurements of production rates and trophic positions and mention how ecological efficiencies, nutrients (N, P) and other compounds (fatty acids) affect energy transfer between trophic levels and hence TTE. Furthermore, we elucidate how TTE estimates are linked with size-based approaches according to the Metabolic Theory of Ecology, and how food-web models can be applied to study TTE in lakes. Subsequently, we explore temporal and spatial heterogeneity of production and TTE in lakes, with a particular focus on the links between benthic and pelagic habitats and between the lake and the terrestrial environment. We provide an overview of TTE estimates from lakes found in the published literature. Finally, we present two alternative approaches to estimating TTE. First, TTE can be seen as a mechanistic quantity informing about the energy and matter flow between producer and consumer groups. This approach is informative with respect to food-web structure, but requires enormous amounts of data. The greatest uncertainty comes from the proper consideration of basal production to estimate TTE of omnivorous organisms. An alternative approach is estimating food-chain and food-web efficiencies, by comparing the heterotrophic production of single consumer levels or the total sum of all heterotrophic production including that of heterotrophic bacteria to the total sum of primary production. We close the review by pointing to a few research questions that would benefit from more frequent and standardized estimates of TTE in lakes. KW - stoichiometry KW - production rates KW - trophic position KW - fatty acids KW - land-water coupling KW - food-web models Y1 - 2022 U6 - https://doi.org/10.1007/s10021-022-00776-3 SN - 1432-9840 SN - 1435-0629 VL - 25 IS - 8 SP - 1628 EP - 1652 PB - Springer CY - New York ER - TY - JOUR A1 - Piepho, Maike A1 - Arts, Michael T. A1 - Wacker, Alexander T1 - Species-specific variation in fatty acid concentrations of four phytoplankton species does phosphorus supply influence the effect of light intensity of temperature? JF - Journal of phycology N2 - We tested, in the laboratory, the influence of light intensity, temperature, and phosphorus (P) supply on fatty acid (FA) concentrations of four freshwater algae: the green algae Scenedesmus quadricauda (Turpin) Breb. and Chlamydomonas globosa J. Snow, the cryptophyte Cryptomonas ovata Ehrenb., and the diatom Cyclotella meneghiniana Kutz. We investigated the main and interactive effects of two variables on algal FA concentrations (i.e., light intensity and P supply or temperature and P supply). Interactive effects of light intensity and P supply were most pronounced in C. meneghiniana, but were also found in S. quadricauda and C. ovata. Changes in several saturated and unsaturated FA concentrations with light were more distinct in the low-P treatments than in the high-P treatments. Interactive effects of temperature and P supply on various FA concentrations were observed in all four species, but there was no consistent pattern. In lake ecosystems, P limitation often coincides with high light intensities and temperatures in summer. Therefore, it is important to examine how combinations of these environmental conditions affect FA concentrations of primary producers that are important sources of FAs for higher trophic levels. KW - Chlamydomonas KW - Cryptomonas KW - Cyclotella KW - fatty acids KW - light KW - lipids KW - phosphate KW - PUFA KW - Scenedesmus KW - temperature Y1 - 2012 U6 - https://doi.org/10.1111/j.1529-8817.2011.01103.x SN - 0022-3646 VL - 48 IS - 1 SP - 64 EP - 73 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Schälicke, Svenja A1 - Heim, Silvia A1 - Martin-Creuzburg, Dominik A1 - Wacker, Alexander T1 - Inter- and intraspecific differences in rotifer fatty acid composition during acclimation to low-quality food JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Biochemical food quality constraints affect the performance of consumers and mediate trait variation among and within consumer species. To assess inter- and intraspecific differences in fatty acid retention and conversion in freshwater rotifers, we provided four strains of two closely related rotifer species,Brachionus calyciflorussensustricto andBrachionus fernandoi, with food algae differing in their fatty acid composition. The rotifers grazed for 5 days on eitherNannochloropsis limneticaorMonoraphidium minutum, two food algae with distinct polyunsaturated fatty acid (PUFA) profiles, before the diets were switched to PUFA-freeSynechococcus elongatus, which was provided for three more days. We found between- and within-species differences in rotifer fatty acid compositions on the respective food sources and, in particular, highly specific acclimation reactions to the PUFA-free diet. The different reactions indicate inter- but also intraspecific differences in physiological traits, such as PUFA retention, allocation and bioconversion capacities, within the genusBrachionusthat are most likely accompanied by differences in their nutritional demands. Our data suggest that biochemical food quality constraints act differently on traits of closely related species and of strains of a particular species and thus might be involved in shaping ecological interactions and evolutionary processes. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'. KW - Brachionus KW - fatty acids KW - food quality KW - PUFA composition KW - rotifer KW - strains KW - trait variation Y1 - 2020 U6 - https://doi.org/10.1098/rstb.2019.0644 SN - 0962-8436 SN - 1471-2970 VL - 375 IS - 1804 PB - Royal Society CY - London ER -