TY - GEN A1 - Kearney, Eric A1 - Razinskas, Stefan A1 - Weiss, Matthias A1 - Hoegl, Martin T1 - Gender diversity and team performance under time pressure BT - The role of team withdrawal and information elaboration T2 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe N2 - Findings in the extant literature are mixed concerning when and how gender diversity benefits team performance. We develop and test a model that posits that gender-diverse teams outperform gender-homogeneous teams when perceived time pressure is low, whereas the opposite is the case when perceived time pressure is high. Drawing on the categorization-elaboration model (CEM; van Knippenberg, De Dreu, & Homan, 2004), we begin with the assumption that information elaboration is the process whereby gender diversity fosters positive effects on team performance. However, also in line with the CEM, we argue that this process can be disrupted by adverse team dynamics. Specifically, we argue that as time pressure increases, higher gender diversity leads to more team withdrawal, which, in turn, moderates the positive indirect effect of gender diversity on team performance via information elaboration such that this effect becomes weaker as team withdrawal increases. In an experimental study of 142 four-person teams, we found support for this model that explains why perceived time pressure affects the performance of gender-diverse teams more negatively than that of gender-homogeneous teams. Our study sheds new light on when and how gender diversity can become either an asset or a liability for team performance. T3 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe - 189 KW - gender diversity KW - information elaboration KW - perceived time pressure KW - team KW - performance KW - team withdrawal Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-606559 SN - 1867-5808 IS - 7 ER - TY - JOUR A1 - Kearney, Eric A1 - Razinskas, Stefan A1 - Weiss, Matthias A1 - Hoegl, Martin T1 - Gender diversity and team performance under time pressure BT - the role of team withdrawal and information elaboration JF - Journal of organizational behavior N2 - Findings in the extant literature are mixed concerning when and how gender diversity benefits team performance. We develop and test a model that posits that gender-diverse teams outperform gender-homogeneous teams when perceived time pressure is low, whereas the opposite is the case when perceived time pressure is high. Drawing on the categorization-elaboration model (CEM; van Knippenberg, De Dreu, & Homan, 2004), we begin with the assumption that information elaboration is the process whereby gender diversity fosters positive effects on team performance. However, also in line with the CEM, we argue that this process can be disrupted by adverse team dynamics. Specifically, we argue that as time pressure increases, higher gender diversity leads to more team withdrawal, which, in turn, moderates the positive indirect effect of gender diversity on team performance via information elaboration such that this effect becomes weaker as team withdrawal increases. In an experimental study of 142 four-person teams, we found support for this model that explains why perceived time pressure affects the performance of gender-diverse teams more negatively than that of gender-homogeneous teams. Our study sheds new light on when and how gender diversity can become either an asset or a liability for team performance. KW - gender diversity KW - information elaboration KW - perceived time pressure KW - team KW - performance KW - team withdrawal Y1 - 2022 U6 - https://doi.org/10.1002/job.2630 SN - 0894-3796 SN - 1099-1379 VL - 43 IS - 7 SP - 1224 EP - 1239 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Krapf, Diego A1 - Lukat, Nils A1 - Marinari, Enzo A1 - Metzler, Ralf A1 - Oshanin, Gleb A1 - Selhuber-Unkel, Christine A1 - Squarcini, Alessio A1 - Stadler, Lorenz A1 - Weiss, Matthias A1 - Xu, Xinran T1 - Spectral Content of a Single Non-Brownian Trajectory JF - Physical review : X, Expanding access N2 - Time-dependent processes are often analyzed using the power spectral density (PSD) calculated by taking an appropriate Fourier transform of individual trajectories and finding the associated ensemble average. Frequently, the available experimental datasets are too small for such ensemble averages, and hence, it is of a great conceptual and practical importance to understand to which extent relevant information can be gained from S(f, T), the PSD of a single trajectory. Here we focus on the behavior of this random, realization-dependent variable parametrized by frequency f and observation time T, for a broad family of anomalous diffusions-fractional Brownian motion with Hurst index H-and derive exactly its probability density function. We show that S(f, T) is proportional-up to a random numerical factor whose universal distribution we determine-to the ensemble-averaged PSD. For subdiffusion (H < 1/2), we find that S(f, T) similar to A/f(2H+1) with random amplitude A. In sharp contrast, for superdiffusion (H > 1/2) S(f, T) similar to BT2H-1/f(2) with random amplitude B. Remarkably, for H > 1/2 the PSD exhibits the same frequency dependence as Brownian motion, a deceptive property that may lead to false conclusions when interpreting experimental data. Notably, for H > 1/2 the PSD is ageing and is dependent on T. Our predictions for both sub-and superdiffusion are confirmed by experiments in live cells and in agarose hydrogels and by extensive simulations. KW - Biological Physics KW - Interdisciplinary Physics KW - Statistical Physics Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevX.9.011019 SN - 2160-3308 VL - 9 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Scott, Shane A1 - Weiss, Matthias A1 - Selhuber-Unkel, Christine A1 - Barooji, Younes F. A1 - Sabri, Adal A1 - Erler, Janine T. A1 - Metzler, Ralf A1 - Oddershede, Lene B. T1 - Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods. Y1 - 2022 U6 - https://doi.org/10.1039/d2cp01384c SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 3 SP - 1513 EP - 1537 PB - RSC Publ. CY - Cambridge ER - TY - JOUR A1 - Sposini, Vittoria A1 - Krapf, Diego A1 - Marinari, Enzo A1 - Sunyer, Raimon A1 - Ritort, Felix A1 - Taheri, Fereydoon A1 - Selhuber-Unkel, Christine A1 - Benelli, Rebecca A1 - Weiss, Matthias A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Towards a robust criterion of anomalous diffusion JF - Communications Physics N2 - Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion. Y1 - 2022 U6 - https://doi.org/10.1038/s42005-022-01079-8 SN - 2399-3650 VL - 5 PB - Springer Nature CY - London ER - TY - GEN A1 - Sposini, Vittoria A1 - Krapf, Diego A1 - Marinari, Enzo A1 - Sunyer, Raimon A1 - Ritort, Felix A1 - Taheri, Fereydoon A1 - Selhuber-Unkel, Christine A1 - Benelli, Rebecca A1 - Weiss, Matthias A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Towards a robust criterion of anomalous diffusion T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Anomalous-diffusion, the departure of the spreading dynamics of diffusing particles from the traditional law of Brownian-motion, is a signature feature of a large number of complex soft-matter and biological systems. Anomalous-diffusion emerges due to a variety of physical mechanisms, e.g., trapping interactions or the viscoelasticity of the environment. However, sometimes systems dynamics are erroneously claimed to be anomalous, despite the fact that the true motion is Brownian—or vice versa. This ambiguity in establishing whether the dynamics as normal or anomalous can have far-reaching consequences, e.g., in predictions for reaction- or relaxation-laws. Demonstrating that a system exhibits normal- or anomalous-diffusion is highly desirable for a vast host of applications. Here, we present a criterion for anomalous-diffusion based on the method of power-spectral analysis of single trajectories. The robustness of this criterion is studied for trajectories of fractional-Brownian-motion, a ubiquitous stochastic process for the description of anomalous-diffusion, in the presence of two types of measurement errors. In particular, we find that our criterion is very robust for subdiffusion. Various tests on surrogate data in absence or presence of additional positional noise demonstrate the efficacy of this method in practical contexts. Finally, we provide a proof-of-concept based on diverse experiments exhibiting both normal and anomalous-diffusion. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1313 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585967 SN - 1866-8372 IS - 1313 ER -