TY - JOUR A1 - Ballato, Paolo A1 - Cifelli, Francesca A1 - Heidarzadeh, Ghasem A1 - Ghassemi, Mohammad R. A1 - Wickert, Andrew D. A1 - Hassanzadeh, Jamshid A1 - Dupont-Nivet, Guillaume A1 - Balling, Philipp A1 - Sudo, Masafumi A1 - Zeilinger, Gerold A1 - Schmitt, Axel K. A1 - Mattei, Massimo A1 - Strecker, Manfred T1 - Tectono-sedimentary evolution of the northern Iranian Plateau: insights from middle-late Miocene foreland-basin deposits JF - Basin research N2 - Sedimentary basins in the interior of orogenic plateaus can provide unique insights into the early history of plateau evolution and related geodynamic processes. The northern sectors of the Iranian Plateau of the Arabia-Eurasia collision zone offer the unique possibility to study middle-late Miocene terrestrial clastic and volcaniclastic sediments that allow assessing the nascent stages of collisional plateau formation. In particular, these sedimentary archives allow investigating several debated and poorly understood issues associated with the long-term evolution of the Iranian Plateau, including the regional spatio-temporal characteristics of sedimentation and deformation and the mechanisms of plateau growth. We document that middle-late Miocene crustal shortening and thickening processes led to the growth of a basement-cored range (Takab Range Complex) in the interior of the plateau. This triggered the development of a foreland-basin (Great Pari Basin) to the east between 16.5 and 10.7Ma. By 10.7Ma, a fast progradation of conglomerates over the foreland strata occurred, most likely during a decrease in flexural subsidence triggered by rock uplift along an intraforeland basement-cored range (Mahneshan Range Complex). This was in turn followed by the final incorporation of the foreland deposits into the orogenic system and ensuing compartmentalization of the formerly contiguous foreland into several intermontane basins. Overall, our data suggest that shortening and thickening processes led to the outward and vertical growth of the northern sectors of the Iranian Plateau starting from the middle Miocene. This implies that mantle-flow processes may have had a limited contribution toward building the Iranian Plateau in NW Iran. Y1 - 2017 U6 - https://doi.org/10.1111/bre.12180 SN - 0950-091X SN - 1365-2117 VL - 29 SP - 417 EP - 446 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Carrapa, Barbara A1 - Hauer, Joern A1 - Schoenbohm, Lindsay M. A1 - Strecker, Manfred A1 - Schmitt, Axel K. A1 - Villanueva, Arturo A1 - Gomez, José Sosa T1 - Dynamics of deformation and sedimentation in the northern Sierras Pampeanas : an integrated study of the Neogene Fiambalá basin, NW Argentina ; reply Y1 - 2010 UR - http://gsabulletin.gsapubs.org/ U6 - https://doi.org/10.1130/B30134.1 SN - 0016-7606 ER - TY - JOUR A1 - Coutand, Isabelle A1 - Carrapa, Barbara A1 - Deeken, Anke A1 - Schmitt, Axel K. A1 - Sobel, Edward A1 - Strecker, Manfred T1 - Propagation of orographic barriers along an active range front : insights from sandstone petrography and detrital apatite fission-track thermochronology in the intramontane Angastaco basin, NW Argentina N2 - The arid Puna plateau of the southern Central Andes is characterized by Cenozoic distributed shortening forming intramontane basins that are disconnected from the humid foreland because of the defeat of orogen-traversing channels. Thick Tertiary and Quaternary sedimentary fills in Puna basins have reduced topographic contrasts between the compressional basins and ranges, leading to a typical low-relief plateau morphology. Structurally identical basins that are still externally drained straddle the eastern border of the Puna and document the eastward propagation of orographic barriers and ensuing aridification. One of them, the Angastaco basin, is transitional between the highly compartmentalized Puna highlands and the undeformed Andean foreland. Sandstone petrography, structural and stratigraphic analysis, combined with detrital apatite fission-track thermochronology from a similar to 6200-m-thick Miocene to Pliocene stratigraphic section in the Angastaco basin, document the late Eocene to late Pliocene exhumation history of source regions along the eastern border of the Puna (Eastern Cordillera (EC)) as well as the construction of orographic barriers along the southeastern flank of the Central Andes. Onset of exhumation of a source in the EC in late Eocene time as well as a rapid exhumation of the Sierra de Luracatao (in the EC) at about 20 Ma are recorded in the detrital sediments of the Angastaco basin. Sediment accumulation in the basin began similar to 15 Ma, a time at which the EC had already built sufficient topography to prevent Puna sourced detritus from reaching the basin. After similar to 13 Ma, shortening shifted eastward, exhuming ranges that preserve an apatite fission-track partial annealing zone recording cooling during the late Cretaceous rifting event. Facies changes and fossil content suggest that after 9 Ma, the EC constituted an effective orographic barrier that prevented moisture penetration into the plateau. Between 3.4 and 2.4 Ma, another orographic barrier was uplifted to the east, leading to further aridification and pronounced precipitation gradients along the mountain front. This study emphasizes the important role of tectonics in the evolution of climate in this part of the Andes Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0950-091X U6 - https://doi.org/10.1111/j.1365-2117.2006.00283.x SN - 0950-091X ER - TY - JOUR A1 - Hain, Mathis P. A1 - Strecker, Manfred A1 - Bookhagen, Bodo A1 - Alonso, Ricardo N. A1 - Pingel, H. A1 - Schmitt, Axel K. T1 - Neogene to quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25 degrees S) JF - Tectonics N2 - The northwest Argentine Andes constitute a premier natural laboratory to assess the complex interactions between isolated uplifts, orographic precipitation gradients, and related erosion and sedimentation patterns. Here we present new stratigraphic observations and age information from intermontane basin sediments to elucidate the Neogene to Quaternary shortening history and associated sediment dynamics of the broken Salta foreland. This part of the Andean orogen, which comprises an array of basement-cored range uplifts, is located at similar to 25 degrees S and lies to the east of the arid intraorogenic Altiplano/Puna plateau. In the Salta foreland, spatially and temporally disparate range uplift along steeply dipping inherited faults has resulted in foreland compartmentalization with steep basin-tobasin precipitation gradients. Sediment architecture and facies associations record a three-phase (similar to 10, similar to 5, and <2 Ma), east directed, yet unsystematic evolution of shortening, foreland fragmentation, and ensuing changes in precipitation and sediment transport. The provenance signatures of these deposits reflect the trapping of sediments in the intermontane basins of the Andean hinterland, as well as the evolution of a severed fluvial network. Present-day moisture supply to the hinterland is determined by range relief and basin elevation. The conspiring effects of range uplift and low rainfall help the entrapment and long-term storage of sediments, ultimately raising basin elevation in the hinterland, which may amplify aridification in the orogen interior. Y1 - 2011 U6 - https://doi.org/10.1029/2010TC002703 SN - 0278-7407 VL - 30 IS - 11 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Insel, N. A1 - Grove, M. A1 - Haschke, Michael A1 - Barnes, J. B. A1 - Schmitt, Axel K. A1 - Strecker, Manfred T1 - Paleozoic to early Cenozoic cooling and exhumation of the basement underlying the eastern Puna plateau margin prior to plateau growth JF - Tectonics N2 - Constraining the pre-Neogene history of the Puna plateau is crucial for establishing the initial conditions that attended the early stage evolution of the southern extent of the Andean plateau. We apply high-to low-temperature thermochronology data from plutonic rocks in northwestern Argentina to quantify the Paleozoic, Mesozoic and early Tertiary cooling history of the Andean crust. U-Pb crystallization ages of zircons indicate that pluton intrusion occurred during the early mid-Ordovician (490-470 Ma) and the late Jurassic (160-150 Ma). Lower-temperature cooling histories from Ar-40/Ar-39 analyses of K-feldspar vary substantially. Basement rocks underlying the western Puna resided at temperatures below 200 degrees C (<6 km depth) since the Devonian (similar to 400 Ma). In contrast, basement rocks underlying the southeastern Puna were hotter (similar to 200-300 degrees C) throughout the Paleozoic and Jurassic and cooled to temperatures of <200 degrees C by similar to 120 Ma. The southeastern Puna basement records a rapid cooling phase coeval with active extension of the Cretaceous Salta rift at similar to 160-100 Ma that we associate with tectonic faulting and lithospheric thinning. The northeastern Puna experienced protracted cooling until the late Cretaceous with temperatures <200 degrees C during the Paleocene. Higher cooling rates between 78 and 55 Ma are associated with thermal subsidence during the postrift stage of the Salta rift and/or shortening-related flexural subsidence. Accelerated cooling and deformation during the Eocene was focused within a narrow zone along the eastern Puna/Eastern Cordillera transition that coincides with Paleozoic/Mesozoic structural and thermal boundaries. Our results constrain regional erosion-induced cooling throughout the Cenozoic to have been less than similar to 150 degrees C, which implies total Cenozoic denudation of <6-4 km. Y1 - 2012 U6 - https://doi.org/10.1029/2012TC003168 SN - 0278-7407 VL - 31 IS - 23 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Pingel, Heiko A1 - Mulch, Andreas A1 - Alonso, Ricardo N. A1 - Cottle, John A1 - Hynek, Scott A. A1 - Poletti, Jacob A1 - Rohrmann, Alexander A1 - Schmitt, Axel K. A1 - Stockli, Daniel F. A1 - Strecker, Manfred T1 - Surface uplift and convective rainfall along the southern Central Andes (Angastaco Basin, NW Argentina) JF - Earth & planetary science letters N2 - Stable-isotopic and sedimentary records from the orogenic Puna Plateau of NW Argentina and adjacent intermontane basins to the east furnish a unique late Cenozoic record of range uplift and ensuing paleoenvironmental change in the south-central Andes. Today, focused precipitation in this region occurs along the eastern, windward flanks of the Eastern Cordillera and Sierras Pampeanas ranges, while the orogen interior constitutes high-elevation regions with increasingly arid conditions in a westward direction. As in many mountain belts, such hydrologic and topographic gradients are commonly mirrored by a systematic relationship between the oxygen and hydrogen stable isotope ratios of meteoric water and elevation. The glass fraction of isotopically datable volcanic ash intercalated in sedimentary sequences constitutes an environmental proxy that retains a signal of the hydrogen-isotopic composition of ancient precipitation. This isotopic composition thus helps to elucidate the combined climatic and tectonic processes associated with topographic growth, which ultimately controls the spatial patterns of precipitation in mountain belts. However, between 25.5 and 27 degrees S present-day river-based hydrogen isotope lapse rates are very low, possibly due to deep-convective seasonal storms that dominate runoff. If not accounted for, the effects of such conditions on moisture availability in the past may lead to misinterpretations of proxy-records of rainfall. Here, we present hydrogen-isotope data of volcanic glass (delta Dg), extracted from 34 volcanic ash layers in different sedimentary basins of the Eastern Cordillera and the Sierras Pampeanas. Combined with previously published delta Dg records and our refined U-Pb and (U-Th)/He zircon geochronology on 17 tuff samples, we demonstrate hydrogen-isotope variations associated with paleoenvironmental change in the Angastaco Basin, which evolved from a contiguous foreland to a fault-bounded intermontane basin during the late Mio-Pliocene. We unravel the environmental impact of Mio-Pliocene topographic growth and associated orographic effects on long-term hydrogen-isotope records of rainfall in the south-central Andes, and potentially identify temporal variations in regional isotopic lapse rates that may also apply to other regions with similar topographic boundary conditions. (C) 2016 Elsevier B.V. All rights reserved. KW - hydrogen stable isotopes KW - volcanic glass KW - paleoaltimetry KW - NW-Argentine Andes KW - orographic barrier uplift KW - convective rainfall Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.02.009 SN - 0012-821X SN - 1385-013X VL - 440 SP - 33 EP - 42 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pingel, Heiko A1 - Strecker, Manfred A1 - Alonso, Ricardo N. A1 - Schmitt, Axel K. T1 - Neotectonic basin and landscape evolution in the Eastern Cordillera of NW Argentina, Humahuaca Basin (similar to 24 degrees S) JF - BASIN RESEARCH N2 - The intermontane Quebrada de Humahuaca Basin (Humahuaca Basin) in the Eastern Cordillera of the southern Central Andes of NW Argentina (23 degrees-24 degrees S) records the evolution of a formerly contiguous foreland-basin setting to an intermontane depositional environment during the late stages of Cenozoic Andean mountain building. This basin has been and continues to be subject to shortening and surface uplift, which has resulted in the establishment of an orographic barrier for easterly sourced moisture-bearing winds along its eastern margin, followed by leeward aridification. We present new U-Pb zircon ages and palaeocurrent reconstructions suggesting that from at least 6Ma until 4.2Ma, the Humahuaca Basin was an integral part of a largely contiguous depositional system that became progressively decoupled from the foreland as deformation migrated eastward. The Humahuaca Basin experienced multiple cycles of severed hydrological conditions and subsequent re-captured drainage, fluvial connectivity with the foreland and sediment evacuation. Depositional and structural relationships among faults, regional unconformities and deformed landforms reveal a general pattern of intrabasin deformation that appears to be associated with different cycles of alluviation and basin excavation in which deformation is focused on basin-internal structures during or subsequent to phases of large-scale sediment removal. Y1 - 2013 U6 - https://doi.org/10.1111/bre.12016 SN - 0950-091X VL - 25 IS - 5 SP - 554 EP - 573 PB - WILEY-BLACKWELL CY - HOBOKEN ER - TY - JOUR A1 - Uba, Cornelius Eji A1 - Hasler, Claude-Alain A1 - Buatois, Luis A. A1 - Schmitt, Axel K. A1 - Plessen, Birgit T1 - Isotopic, paleontologic, and ichnologic evidence for late Miocene pulses of marine incursions in the central Andes N2 - Recognition of an inferred Miocene marine incursion affecting areas from Colombia through Peru and Bolivia and into Argentina is essential to delineate the South American Seaway. In Bolivia, corresponding strata of inferred marine origin have been assigned to the late Miocene Yecua Formation. We carried out high-resolution delta C-13 and delta O-18 isotopic studies on 135 in situ carbonates from 3 outcrops, combined with detailed sedimentologic, paleontologic, and ichnologic analysis. Four less negative delta C-13 excursion levels were recorded that coincide well with beds containing marine body (barnacle) and trace (Ophiomorpha) fossils. These strata are interbedded with red-green beds containing mudcracks, plant roots, gypsum, and trace fossils of the continental Scoyenia ichnofacies. Our data are significant in that they show for the first time four possible short-lived marine incursions in the Bolivian central Andes during the late Miocene. The result is constrained by a new U-Pb date of 7.17 +/- 0.34 Ma at the top of Yecua strata. Y1 - 2009 UR - http://geology.gsapubs.org/ U6 - https://doi.org/10.1130/G30014a.1 SN - 0091-7613 ER - TY - JOUR A1 - Uba, Cornelius Eji A1 - Kley, Jonas A1 - Strecker, Manfred A1 - Schmitt, Axel K. T1 - Unsteady evolution of the Bolivian Subandean thrust belt : the role of enhanced erosion and clastic wedge progradation N2 - The Subandean fold and thrust belt of Bolivia constitutes the easternmost part of the Andean orogen that reflects thin-skinned shortening and eastward propagation of the Andean deformation front. The exact interplay of tectonics, climate, and erosion in the deposition of up to 7.5 km of late Cenozoic strata exposed in the Subandes remains unclear. To better constrain these relationships, we use four W-E industry seismic reflection profiles, eight new zircon U-Pb ages from Mio-Pliocene sedimentary strata, and cross-section balancing to evaluate the rates of thrust propagation, shortening, and deposition pinch-out migration. Eastward thrusting arrived in the Subandean belt at similar to 12.4 +/- 0.5 Ma and propagated rapidly toward the foreland unit approximately 6 Ma. This was followed by out-of- sequence deformation from ca. 4 to 2.1 Ma and by renewed eastward propagation thereafter. Our results show that the thrust-front propagation- and deposition pinch-out migration rates mimic the sediment accumulation rate. The rates of deposition pinchout migration and thrust propagation increased three- and two fold, respectively (8 mm/a; 3.3 mm/a) at 86 Ma. The three-fold increase in deposition pinch-out migration rate at this time is an indication of enhanced erosional efficiency in the hinterland, probably coupled with flexural rebound of the basin. Following the pulse of pinch-out migration, the Subandean belt witnessed rapid similar to 80 km eastward propagation of thrusting to the La Vertiente structure at 6 Ma. As there is no evidence for this event of thrust front migration being linked to an increase in shortening rate, the enhanced frontal accretion suggests a shift to supercritical wedge taper conditions. We propose that the supercritical state was due to a drop in basal strength, caused by sediment loading and pore fluid overpressure. This scenario implies that climate-controlled variation in erosional efficiency was the driver of late Miocene mass redistribution, which induced flexural rebound of the Subandean thrust belt, spreading of a large clastic wedge across the basin, and subsequent thrust-front propagation. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/0012821X U6 - https://doi.org/10.1016/j.epsl.2009.02.010 SN - 0012-821X ER -