TY - JOUR A1 - Al Nakeeb, Noah A1 - Kochovski, Zdravko A1 - Li, Tingting A1 - Zhang, Youjia A1 - Lu, Yan A1 - Schmidt, Bernhard V. K. J. T1 - Poly(ethylene glycol) brush-b-poly(N-vinylpyrrolidone)-based double hydrophilic block copolymer particles crosslinked via crystalline alpha-cyclodextrin domains JF - RSC Advances N2 - Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via alpha-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for alpha-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking. Y1 - 2019 U6 - https://doi.org/10.1039/c8ra10672j SN - 2046-2069 VL - 9 IS - 9 SP - 4993 EP - 5001 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Khodeir, Miriam A1 - Ernould, Bruno A1 - Brassinne, Jeremy A1 - Ghiassinejad, Sina A1 - Jia, He A1 - Antoun, Sayed A1 - Friebe, Christian A1 - Schubert, Ulrich S. A1 - Kochovski, Zdravko A1 - Lu, Yan A1 - Van Ruymbeke, Evelyne A1 - Gohy, Jean-Francois T1 - Synthesis and characterisation of redox hydrogels based on stable nitroxide radicals JF - Soft matter N2 - The principle of encapsulation/release of a guest molecule from stimuli responsive hydrogels (SRHs) is mainly realised with pH, temperature or light stimuli. However, only a limited number of redox responsive hydrogels have been investigated so far. We report here the development of a SRH that can release its guest molecule upon a redox stimulus. To obtain this redox hydrogel, we have introduced into the hydrogel the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radical, which can be reversibly oxidized into an oxoammonium cation (TEMPO+). Water solubility is provided by the presence of the (oligoethyleneglycol)methacrylate (OEGMA) comonomer. Electrochemical and mechanical characterization showed that those gels exhibit interesting physicochemical properties, making them very promising candidates for practical use in a wide range of applications. Y1 - 2019 U6 - https://doi.org/10.1039/c9sm00905a SN - 1744-683X SN - 1744-6848 VL - 15 IS - 31 SP - 6418 EP - 6426 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kochovski, Zdravko A1 - Chen, Guosong A1 - Yuan, Jiayin A1 - Lu, Yan T1 - Cryo-Electron microscopy for the study of self-assembled poly(ionic liquid) nanoparticles and protein supramolecular structures JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - Cryo-electron microscopy (cryo-EM) is a powerful structure determination technique that is well-suited to the study of protein and polymer self-assembly in solution. In contrast to conventional transmission electron microscopy (TEM) sample preparation, which often times involves drying and staining, the frozen-hydrated sample preparation allows the specimens to be kept and imaged in a state closest to their native one. Here, we give a short overview of the basic principles of Cryo-EM and review our results on applying it to the study of different protein and polymer self-assembled nanostructures. More specifically, we show how we have applied cryo-electron tomography (cryo-ET) to visualize the internal morphology of self-assembled poly(ionic liquid) nanoparticles and cryo-EM single particle analysis (SPA) to determine the three-dimensional (3D) structures of artificial protein microtubules. KW - self-assembly KW - poly(ionic liquid) nanoparticles KW - protein self-assembly KW - cryo-electron microscopy KW - single particle analysis KW - cryo-electron KW - tomography Y1 - 2020 U6 - https://doi.org/10.1007/s00396-020-04657-w SN - 0303-402X SN - 1435-1536 VL - 298 IS - 7 SP - 707 EP - 717 PB - Springer CY - New York ER - TY - GEN A1 - Kochovski, Zdravko A1 - Jia, He A1 - Lu, Yan T1 - Morphological study of microgel-based colloidal systems by cryogenic transmission electron microscopy (cryo-TEM) T2 - Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS Y1 - 2018 SN - 0065-7727 VL - 256 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Pan, Xuefeng A1 - Sarhan, Radwan Mohamed A1 - Kochovski, Zdravko A1 - Chen, Guosong A1 - Taubert, Andreas A1 - Mei, Shilin A1 - Lu, Yan T1 - Template synthesis of dual-functional porous MoS2 nanoparticles with photothermal conversion and catalytic properties JF - Nanoscale N2 - Advanced catalysis triggered by photothermal conversion effects has aroused increasing interest due to its huge potential in environmental purification. In this work, we developed a novel approach to the fast degradation of 4-nitrophenol (4-Nip) using porous MoS2 nanoparticles as catalysts, which integrate the intrinsic catalytic property of MoS2 with its photothermal conversion capability. Using assembled polystyrene-b-poly(2-vinylpyridine) block copolymers as soft templates, various MoS 2 particles were prepared, which exhibited tailored morphologies (e.g., pomegranate-like, hollow, and open porous structures). The photothermal conversion performance of these featured particles was compared under near-infrared (NIR) light irradiation. Intriguingly, when these porous MoS2 particles were further employed as catalysts for the reduction of 4-Nip, the reaction rate constant was increased by a factor of 1.5 under NIR illumination. We attribute this catalytic enhancement to the open porous architecture and light-to-heat conversion performance of the MoS2 particles. This contribution offers new opportunities for efficient photothermal-assisted catalysis. Y1 - 2022 U6 - https://doi.org/10.1039/d2nr01040b SN - 2040-3372 VL - 14 IS - 18 SP - 6888 EP - 6901 PB - RSC Publ. (Royal Society of Chemistry) CY - Cambridge ER - TY - JOUR A1 - Qi, Wenjing A1 - Zhang, Yufei A1 - Kochovski, Zdravko A1 - Wang, Jue A1 - Lu, Yan A1 - Chen, Guosong A1 - Jiang, Ming T1 - Self-assembly of Human Galectin-1 via dual supramolecular interactions and its inhibition of T-cell agglutination and apoptosis JF - Nano Research N2 - Recently, we proposed a new strategy to construct artificial plant protein assemblies, which were induced by adding a small molecule, based on dual supramolecular interactions. In this paper, we further explored this method by employing Human Galectin-1 (Gal-1) as a building block to form self-assembled microribbons. Two non-covalent interactions, including lactose-lectin binding and dimerization of Rhodamine B (RhB), induced by the small molecule ligand addition, were involved in the crosslinking of the animal protein, resulting in the formation of assemblies. By using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and three-dimensional (3D) tomographic analysis, we arrived at a possible mechanistic model for the microribbon formation. Furthermore, the morphology of protein assemblies could be fine-timed by varying the incubation time, the protein/ligand ratio, and the chemical structures of ligands. Interestingly, the formation of protein microribbons successfully inhibited Gal-1 induced T-cell agglutination and apoptosis. This is because the multivalent and dynamic interactions in protein assemblies compete with the binding between Gal-1 and the glycans on cell surfaces, which suppresses the function of Gal-1 in promotion of tumor progression and metastasis. KW - protein self-assembly KW - supramolecular interactions KW - galectin KW - cell agglutination Y1 - 2018 U6 - https://doi.org/10.1007/s12274-018-2169-7 SN - 1998-0124 SN - 1998-0000 VL - 11 IS - 10 SP - 5566 EP - 5572 PB - Tsinghua Univ Press CY - Beijing ER - TY - JOUR A1 - Quan, Ting A1 - Goubard-Bretesche, Nicolas A1 - Haerk, Eneli A1 - Kochovski, Zdravko A1 - Mei, Shilin A1 - Pinna, Nicola A1 - Ballauff, Matthias A1 - Lu, Yan T1 - Highly Dispersible Hexagonal Carbon-MoS2-Carbon Nanoplates with Hollow Sandwich Structures for Supercapacitors JF - Chemistry - a European journal N2 - MoS2, a typical layered transition-metal dichalcogenide, is promising as an electrode material in supercapacitors. However, its low electrical conductivity could lead to limited capacitance if applied in electrochemical devices. Herein, a new nanostructure composed of hollow carbon-MoS2-carbon was successfully synthesized through an L-cysteine-assisted hydrothermal method by using gibbsite as a template and polydopamine as a carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which were made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, were obtained. The platelets showed excellent dispersibility and stability in water, and good electrical conductivity due to carbon provided by the calcination of polydopamine coatings. The hollow nanoplate morphology of the material provided a high specific surface area of 543 m(2) g(-1), a total pore volume of 0.677 cm(3) g(-1), and fairly small mesopores (approximate to 5.3 nm). The material was applied in a symmetric supercapacitor and exhibited a specific capacitance of 248 F g(-1) (0.12 F cm(-2)) at a constant current density of 0.1 Ag-1; thus suggesting that hollow carbon-MoS2 carbon nanoplates are promising candidate materials for supercapacitors. KW - carbon KW - chalcogens KW - electrochemistry KW - nanostructures KW - supercapacitors Y1 - 2019 U6 - https://doi.org/10.1002/chem.201806060 SN - 0947-6539 SN - 1521-3765 VL - 25 IS - 18 SP - 4757 EP - 4766 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Rothe, Martin A1 - Zhao, Yuhang A1 - Kewes, Günter A1 - Kochovski, Zdravko A1 - Sigle, Wilfried A1 - van Aken, Peter A. A1 - Koch, Christoph A1 - Ballauff, Matthias A1 - Lu, Yan A1 - Benson, Oliver T1 - Silver nanowires with optimized silica coating as versatile plasmonic resonators JF - Scientific reports N2 - Metal nanoparticles are the most frequently used nanostructures in plasmonics. However, besides nanoparticles, metal nanowires feature several advantages for applications. Their elongation offers a larger interaction volume, their resonances can reach higher quality factors, and their mode structure provides better coupling into integrated hybrid dielectric-plasmonic circuits. It is crucial though, to control the distance of the wire to a supporting substrate, to another metal layer or to active materials with sub-nanometer precision. A dielectric coating can be utilized for distance control, but it must not degrade the plasmonic properties. In this paper, we introduce a controlled synthesis and coating approach for silver nanowires to fulfill these demands. We synthesize and characterize silver nanowires of around 70 nm in diameter. These nanowires are coated with nm-sized silica shells using a modified Stober method to achieve a homogeneous and smooth surface quality. We use transmission electron microscopy, dark-field microscopy and electron-energy loss spectroscopy to study morphology and plasmonic resonances of individual nanowires and quantify the influence of the silica coating. Thorough numerical simulations support the experimental findings showing that the coating does not deteriorate the plasmonic properties and thus introduce silver nanowires as usable building blocks for integrated hybrid plasmonic systems. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-40380-5 SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Sung, Jian-Ke A1 - Kochovski, Zdravko A1 - Zhang, Wei-Yi A1 - Kirmse, Holm A1 - Lu, Yan A1 - Antonietti, Markus A1 - Yuan, Jiayin T1 - General Synthetic Route toward Highly Dispersed Metal Clusters Enabled by Poly(ionic liquid)s JF - Journal of the American Chemical Society N2 - The ability to synthesize a broad spectrum of metal clusters (MCs) with their size controllable on a subnanometer scale presents an enticing prospect for exploring nanosize-dependent properties. Here we report an innovative design of a capping agent from a polytriazolium poly(ionic liquid) (PIL) in a vesicular form in solution that allows for crafting a variety of MCs including transition metals, noble metals, and their bimetallic alloy with precisely controlled sizes (similar to 1 nm) and record-high catalytic performance. The ultrastrong stabilization power is a result of an unusual synergy between the conventional binding sites in the heterocyclic cations in PIL and an in situ generated polycarbene structure induced simultaneously to the reduction reaction. Y1 - 2017 U6 - https://doi.org/10.1021/jacs.7b03357 SN - 0002-7863 VL - 139 SP - 8971 EP - 8976 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Xie, Dongjiu A1 - Jouini, Oumeima A1 - Mei, Shilin A1 - Quan, Ting A1 - Xu, Yaolin A1 - Kochovski, Zdravko A1 - Lu, Yan T1 - Spherical polyelectrolyte brushes templated hollow C@MnO nanospheres as sulfur host materials for Li-S batteries JF - ChemNanoMat : Chemistry of Nanomaterials for Energy, Biology and More N2 - Li-S battery has been considered as the next-generation energy storage device, which still suffers from the shuttle effect of lithium polysulfides (LiPSs). In this work, mesoporous hollow carbon-coated MnO nanospheres (C@MnO) have been designed and synthesized using spherical polyelectrolyte brushes (SPB) as template, KMnO4 as MnO precursor, and polydopamine as carbon source to improve the electrochemical performance of Li-S battery. The hollow C@MnO nanospheres enable the combination of physical confinement and chemical adsorption of the LiPSs. The thin carbon coating layer can provide good electrical conductivity and additional physical confinement to polysulfides. Moreover, the encapsulated MnO inside the carbon shell exhibits strong chemical adsorption to polysulfides. The constructed C@MnO/S cathode shows the discharge capacity of 1026 mAh g(-1) at 0.1 C with 79% capacity retention after 80 cycles. The synthesized hollow C@MnO nanoparticles can work as highly efficient sulfur host materials, providing an effective solution to suppress the shuttle effect in Li-S battery. KW - hollow nanospheres KW - lithium-sulfur battery KW - manganese monoxide KW - sperical KW - polyelectrolyte brushes Y1 - 2022 U6 - https://doi.org/10.1002/cnma.202100455 SN - 2199-692X VL - 8 IS - 4 PB - Wiley-VCH CY - Weinheim ER -