TY - JOUR A1 - Fedyunin, Ivan A1 - Lehnhardt, Lothar A1 - Böhmer, Nadine A1 - Kaufmann, Paul A1 - Zhang, Gong A1 - Ignatov, Zoya T1 - tRNA concentration fine tunes protein solubility Y1 - 2012 UR - http://www.sciencedirect.com/science/article/pii/S0014579312005807 ER - TY - JOUR A1 - Fedyunin, Ivan A1 - Lehnhardt, Lothar A1 - Böhmer, Nadine A1 - Kaufmann, Paul A1 - Zhang, Gong A1 - Ignatova, Zoya T1 - tRNA concentration fine tunes protein solubility JF - FEBS letters : the journal for rapid publication of short reports in molecular biosciences N2 - Clusters of codons pairing to low-abundance tRNAs synchronize the translation with co-translational folding of single domains in multidomain proteins. Although proven with some examples, the impact of the ribosomal speed on the folding and solubility on a global, cell-wide level remains elusive. Here we show that upregulation of three low-abundance tRNAs in Escherichia coil increased the aggregation propensity of several cellular proteins as a result of an accelerated elongation rate. Intriguingly, alterations in the concentration of the natural tRNA pool compromised the solubility of various chaperones consequently rendering the solubility of some chaperone-dependent proteins. KW - Protein translation KW - Protein misfolding KW - tRNA KW - E. coli Y1 - 2012 U6 - https://doi.org/10.1016/j.febslet.2012.07.012 SN - 0014-5793 VL - 586 IS - 19 SP - 3336 EP - 3340 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kaufmann, Paul A1 - Duffus, Benjamin R. A1 - Teutloff, Christian A1 - Leimkühler, Silke T1 - Functional Studies on Oligotropha carboxidovorans Molybdenum-Copper CO Dehydrogenase Produced in Escherichia coli JF - Biochemistry N2 - The Mo/Cu-dependent CO dehydrogenase (CODH) from Oligotropha carboxidovorans is an enzyme that is able to catalyze both the oxidation of CO to CO2 and the oxidation of H-2 to protons and electrons. Despite the close to atomic resolution structure (1.1 angstrom), significant uncertainties have remained with regard to the reaction mechanism of substrate oxidation at the unique Mo/Cu center, as well as the nature of intermediates formed during the catalytic cycle. So far, the investigation of the role of amino acids at the active site was hampered by the lack of a suitable expression system that allowed for detailed site-directed mutagenesis studies at the active site. Here, we report on the establishment of a functional heterologous expression system of O. carboxidovorans CODH in Escherichia coli. We characterize the purified enzyme in detail by a combination of kinetic and spectroscopic studies and show that it was purified in a form with characteristics comparable to those of the native enzyme purified from O. carboxidovorans. With this expression system in hand, we were for the first time able to generate active-site variants of this enzyme. Our work presents the basis for more detailed studies of the reaction mechanism for CO and H-2 oxidation of Mo/Cu-dependent CODHs in the future. Y1 - 2018 U6 - https://doi.org/10.1021/acs.biochem.8b00128 SN - 0006-2960 VL - 57 IS - 19 SP - 2889 EP - 2901 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Mitrova, Biljana A1 - Tadjoung Waffo, Armel Franklin A1 - Kaufmann, Paul A1 - Iobbi-Nivol, Chantal A1 - Leimkühler, Silke A1 - Wollenberger, Ulla T1 - Trimethylamine N-Oxide Electrochemical Biosensor with a Chimeric Enzyme JF - ChemElectroChem N2 - For the first time, an enzyme-based electrochemical biosensor system for determination of trimethylamine N-oxide (TMAO) is described. It employs an active chimeric variant of TorA in combination with an enzymatically deoxygenating system and a low-potential mediator for effective regeneration of the enzyme and cathodic current generation. TMAO reductase (TorA) is a molybdoenzyme found in marine and most enterobacteria that specifically catalyzes the reduction of TMAO to trimethylamine (TMA). The chimeric TorA, named TorA-FDH, corresponds to the apoform of TorA from Escherichia coli reconstituted with the molybdenum cofactor from formate dehydrogenase (FDH). Each enzyme, TorA and TorA-FDH, was immobilized on the surface of a carbon electrode and protected with a dialysis membrane. The biosensor operates at an applied potential of -0.8V [vs. Ag/AgCl (1M KCl)] under ambient air conditions thanks to an additional enzymatic O-2-scavenger system. A comparison between the two enzymatic sensors revealed a much higher sensitivity for the biosensor with immobilized TorA-FDH. This biosensor exhibits a sensitivity of 14.16nA/M TMAO in a useful measuring range of 2-110M with a detection limit of LOD=2.96nM (S/N=3), and was similar for TMAO in buffer and in spiked serum samples. With a response time of 16 +/- 2 s, the biosensor is stable over prolonged daily measurements (n=20). This electrochemical biosensor provides suitable applications in detecting TMAO levels in human serum. KW - trimethylamine N-oxide (TMAO) KW - TMAO reductase KW - chimeric enzyme KW - molybdoenzyme KW - electrochemical biosensor Y1 - 2018 U6 - https://doi.org/10.1002/celc.201801422 SN - 2196-0216 VL - 6 IS - 6 SP - 1732 EP - 1737 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Reschke, Stefan A1 - Sigfridsson, Kajsa G. V. A1 - Kaufmann, Paul A1 - Leidel, Nils A1 - Horn, Sebastian A1 - Gast, Klaus A1 - Schulzke, Carola A1 - Haumann, Michael A1 - Leimkühler, Silke T1 - Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in escherichia coli JF - The journal of biological chemistry N2 - The molybdenum cofactor is an important cofactor, and its biosynthesis is essential for many organisms, including humans. Its basic form comprises a single molybdopterin (MPT) unit, which binds a molybdenum ion bearing three oxygen ligands via a dithiolene function, thus forming Mo-MPT. In bacteria, this form is modified to form the bis-MPT guanine dinucleotide cofactor with two MPT units coordinated at one molybdenum atom, which additionally contains GMPs bound to the terminal phosphate group of the MPTs (bis-MGD). The MobA protein catalyzes the nucleotide addition to MPT, but the mechanism of the biosynthesis of the bis-MGD cofactor has remained enigmatic. We have established an in vitro system for studying bis-MGD assembly using purified compounds. Quantification of the MPT/molybdenum and molybdenum/phosphorus ratios, time-dependent assays for MPT and MGD detection, and determination of the numbers and lengths of Mo-S and Mo-O bonds by X-ray absorption spectroscopy enabled identification of a novel bis-Mo-MPT intermediate on MobA prior to nucleotide attachment. The addition of Mg-GTP to MobA loaded with bis-Mo-MPT resulted in formation and release of the final bis-MGD product. This cofactor was fully functional and reconstituted the catalytic activity of apo-TMAO reductase (TorA). We propose a reaction sequence for bis-MGD formation, which involves 1) the formation of bis-Mo-MPT, 2) the addition of two GMP units to form bis-MGD on MobA, and 3) the release and transfer of the mature cofactor to the target protein TorA, in a reaction that is supported by the specific chaperone TorD, resulting in an active molybdoenzyme. Y1 - 2013 U6 - https://doi.org/10.1074/jbc.M113.497453 SN - 0021-9258 SN - 1083-351X VL - 288 IS - 41 SP - 29736 EP - 29745 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER -