TY - JOUR A1 - Braeuer, B. A1 - Asch, Günter A1 - Hofstetter, Rami A1 - Haberland, Christian A1 - Jaser, Darweesh A1 - El-Kelani, Radwan J.. A1 - Weber, Michael H. T1 - Microseismicity distribution in the southern Dead Sea basin and its implications on the structure of the basin JF - Geophysical journal international N2 - While the Dead Sea basin has been studied for a long time, the available knowledge about the detailed seismicity distribution in the area, as well as the deeper structure of the basin, is limited. Therefore, within the framework of the international project DESIRE (DEad Sea Integrated REsearch project), a dense temporary local seismological network was operated in the southern Dead Sea area. We use 530 local earthquakes, having all together 26 730 P- and S-arrival times for a simultaneous inversion of 1-D velocity models, station corrections and precise earthquake locations. Jackknife tests suggest an accuracy of the derived hypocentre locations of about 1 km. Thus, the result is the first clear image of the absolute distribution of the microseismicity of the area, especially in depth. The seismicity is concentrated in the upper crust down to 20 km depth while the lower limit of the seismicity is reached at 31 km depth. The seismic events at the eastern boundary fault (EBF) in the southern part of the study area represent the northward transform motion of the Arabian Plate along the Dead Sea Transform. North of the Boqeq fault the seismic activity represents the transfer of the motion in the pull-apart basin from the eastern to the western boundary. We find that from the surface downward the seismic events are tracing the boundary faults of the basin. The western boundary is mapped down to 12 km depth while the EBF reaches about 17 km depth, forming an asymmetric basin. One fifth of the data set is related to a specific cluster in time and space, which occurred in 2007 February at the western border fault. This cluster is aligned vertically, that is, it is perpendicular to the direction of the dominating left-lateral strike-slip movement at the main transform fault. KW - Seismicity and tectonics KW - Continental tectonics: strike-slip and transform KW - Asia Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-246X.2011.05318.x SN - 0956-540X VL - 188 IS - 3 SP - 873 EP - 878 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Braeuer, Benjamin A1 - Asch, Günter A1 - Hofstetter, Rami A1 - Haberland, Christian A1 - Jaser, D. A1 - El-Kelani, R. A1 - Weber, Michael H. T1 - Detailed seismicity analysis revealing the dynamics of the southern Dead Sea area JF - Journal of seismology N2 - Within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. During 18 recording months, 648 events were detected. Based on an already published tomography study clustering, focal mechanisms, statistics and the distribution of the microseismicity in relation to the velocity models from the tomography are analysed. The determined b value of 0.74 leads to a relatively high risk of large earthquakes compared to the moderate microseismic activity. The distribution of the seismicity indicates an asymmetric basin with a vertical strike-slip fault forming the eastern boundary of the basin, and an inclined western boundary, made up of strike-slip and normal faults. Furthermore, significant differences between the area north and south of the Bokek fault were observed. South of the Bokek fault, the western boundary is inactive while the entire seismicity occurs on the eastern boundary and below the basin-fill sediments. The largest events occurred here, and their focal mechanisms represent the northwards transform motion of the Arabian plate along the Dead Sea Transform. The vertical extension of the spatial and temporal cluster from February 2007 is interpreted as being related to the locking of the region around the Bokek fault. North of the Bokek fault similar seismic activity occurs on both boundaries most notably within the basin-fill sediments, displaying mainly small events with strike-slip mechanism and normal faulting in EW direction. Therefore, we suggest that the Bokek fault forms the border between the single transform fault and the pull-apart basin with two active border faults. KW - Dead Sea basin KW - Microseismicity KW - Cluster KW - Pull-apart basin KW - Asymmetric basin KW - Transform fault Y1 - 2014 U6 - https://doi.org/10.1007/s10950-014-9441-4 SN - 1383-4649 SN - 1573-157X VL - 18 IS - 4 SP - 731 EP - 748 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Bräuer, B. A1 - Asch, Günter A1 - Hofstetter, Rami A1 - Haberland, Christian A1 - Jaser, D. A1 - El-Kelani, R. A1 - Weber, Michael H. T1 - High-resolution local earthquake tomography of the southern Dead Sea area JF - Geophysical journal international N2 - Local earthquake data from a dense temporary seismological network in the southern Dead Sea area have been analysed within the project DESIRE (Dead Sea Integrated Research Project). Local earthquakes are used for the first precise image of the distribution of the P-wave velocity and the vP/vS ratios. 65 stations registered 655 local events within 18 months of observation time. A subset of 530 well-locatable events with 26 730 P- and S-arrival times was used to calculate a tomographic model for the vP and vP/vS distribution. Since the study area is at first-order 2-D, a gradual approach was chosen, which compromised a 2-D inversion followed by a 3-D inversion. The sedimentary basin fill is clearly imaged through high vP/vS ratios and low vP. The basin fill shows an asymmetric structure with average depth of 7 km at the western boundary and depth between 10 and 14 km at the eastern boundary. This asymmetry is reflected by the vertical strike-slip eastern border fault, and the normal faulting at the western boundary, caused by the transtensional deformation within the last 5 Myr. Within the basin fill the Lisan salt diapir is imaged through low vP/vS ratios, reflecting its low fluid content. The extensions were determined to 12 km in EW and 17 km in NS direction while its depth is 56 km. The thickness of the pre-basin sediments below the basin fill cannot be derived from the tomography datait is estimated to less than 3 km from former investigations. Below the basin, down to 18 km depth very low P-wave velocities and low vP/vS ratios are observedmost likely caused by fluids from the surrounding crust or the upper mantle. KW - Seismic tomography KW - Continental margins: transform KW - Continental tectonics: strike-slip and transform Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-246X.2012.05668.x SN - 0956-540X VL - 191 IS - 3 SP - 881 EP - 897 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Fromm, T. A1 - Planert, Lars A1 - Jokat, Wilfried A1 - Ryberg, Trond A1 - Behrmann, Jan H. A1 - Weber, Michael H. A1 - Haberland, Christian T1 - South Atlantic opening: A plume-induced breakup? JF - Geology N2 - Upwelling hot mantle plumes are thought to disintegrate continental lithosphere and are considered to be drivers of active continental breakup. The formation of the Walvis Ridge during the opening of the South Atlantic is related to a putative plume-induced breakup. We investigated the crustal structure of the Walvis Ridge (southeast Atlantic Ocean) at its intersection with the continental margin and searched for anomalies related to the possible plume head. The overall structure we identify suggests that no broad plume head existed during opening of the South Atlantic and anomalous mantle melting occurred only locally. We therefore question the importance of a plume head as a driver of continental breakup and further speculate that the hotspot was present before the rifting, leaving a track of kimberlites in the African craton. Y1 - 2015 U6 - https://doi.org/10.1130/G36936.1 SN - 0091-7613 SN - 1943-2682 VL - 43 IS - 10 SP - 931 EP - 934 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Giese, Peter A1 - Graeber, F. A1 - Haberland, Christian A1 - Rietbrock, Andreas A1 - Schurr, B. A1 - Asch, Günter T1 - La sismicidad en los Andes Centrales - una revision Y1 - 1999 SN - 987-97770-1-8 ER - TY - JOUR A1 - Haberland, Christian A1 - Hampe, Oliver A1 - Autenrieth, Marijke A1 - Voss, Manja T1 - Balaenoptera borealis Lesson, 1828 BT - rediscovery of a holotype JF - Mammalia N2 - The whereabouts of the Balaenoptera borealis holotype, the skeleton of a 1819 stranded specimen, have been unknown since the World War II (WWII). Due to nomenclatural confusion, deficient documentation, and finally WWII bombing, which destroyed predominantly cetacean material in the Museum fib Naturkunde Berlin (MfN), the type skeleton of the sei whale sank into oblivion. Construction activities enabled a recent search and study on the remaining whale material. Here, we provide evidence that the type specimen was not destroyed. On the basis of species-wide and individual characters of the type material such as the shape of cranial elements and the pattern of the maxillary foramina, we show that the skull and mandibles, the vertebral column (except the atlas), and the ribs of the holotype remain intact. Further evidence that these skeletal remains belong to the previously missing holotype is provided by the characteristics of the spine. In addition, we analyzed ancient DNA from bone samples and confirm they are B. borealis, and the occurrence of same mitochondrial haplotypes indicate that the bones belong to the same individual. Additionally, a blue inscription was discovered at the caudal epiphysis of a thoracic vertebra; historical research matched this inscription with the material belonging to the former Anatomical-Zootomical Museum, from which the holotype was once bought. KW - Baltic Sea KW - holotype KW - museum collection KW - sei whale KW - skeleton Y1 - 2019 U6 - https://doi.org/10.1515/mammalia-2017-0149 SN - 0025-1461 SN - 1864-1547 VL - 83 IS - 4 SP - 343 EP - 351 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Haberland, Christian A1 - Rietbrock, Andreas A1 - Lange, Dietrich A1 - Bataille, Klaus A1 - Hofmann, S. T1 - Interaction between forearc and oceanic plate at the south-central Chilean margin as seen in local seismic data JF - Geophysical research letters N2 - We installed a dense, amphibious, temporary seismological network to study the seismicity and structure of the seismogenic zone in southern Chile between 37° and 39°S, the nucleation area of the great 1960 Chile earthquake. 213 local earthquakes with 14.754 onset times were used for a simultaneous inversion for the 1‐D velocity model and precise earthquake locations. Relocated artificial shots suggest an accuracy of the earthquake hypocenter of about 1 km (horizontally) and 500 m (vertically). Crustal events along trench‐parallel and transverse, deep‐reaching faults reflect the interseismic transpressional deformation of the forearc crust due to the subduction of the Nazca plate. The transverse faults seems to accomplish differential lateral stresses between subduction zone segments. Many events situated in an internally structured, planar seismicity patch at 20 to 40 km depth near the coast indicate a stress concentration at the plate's interface at 38°S which might in part be induced by the fragmented forearc structure. Y1 - 2006 U6 - https://doi.org/10.1029/2006GL028189 SN - 0094-8276 VL - 33 IS - 23 PB - Union CY - Washington ER - TY - JOUR A1 - Haberland, Christian A1 - Rietbrock, Andreas A1 - Schurr, B. A1 - Brasse, Heinrich T1 - Coincident anomalies of seismic attenuation and electrical resistivity beneath the southern Bolivian Altiplano plateau N2 - Reassessment of local earthquake data from the ANCORP seismological network allowed the calculation of 3D attenuation (Q(p)) tomographic images of crust and upper mantle beneath the southern Bolivian Altiplano around 21degrees S. The images reveal a low-Q(p) middle and lower crust and a moderate-Q(p) upper mantle beneath the southern Altiplano. Beneath the recent magmatic arc, Q(p) is not significantly decreased at this latitude. The distribution of crustal Q(p) coincides with the variation of electrical resistivity, thus limiting the possible mechanisms causing the anomalies. Our findings support the hypothesis that partial melts in middle and lower crust beneath the Altiplano are present on a large scale. We see no evidence for a shallow asthenosphere beneath the southern Altiplano Y1 - 2003 SN - 0094-8276 ER - TY - JOUR A1 - Jozi Najafabadi, Azam A1 - Haberland, Christian A1 - Le Breton, Eline A1 - Handy, Mark R. A1 - Verwater, Vincent F. A1 - Heit, Benjamin A1 - Weber, Michael T1 - Constraints on crustal structure in the vicinity of the adriatic indenter (European Alps) from Vp and Vp/Vs local earthquake tomography JF - Journal of geophysical research : Solid earth N2 - In this study, 3-D models of P-wave velocity (Vp) and P-wave and S-wave ratio (Vp/Vs) of the crust and upper mantle in the Eastern and eastern Southern Alps (northern Italy and southern Austria) were calculated using local earthquake tomography (LET). The data set includes high-quality arrival times from well-constrained hypocenters observed by the dense, temporary seismic networks of the AlpArray AASN and SWATH-D. The resolution of the LET was checked by synthetic tests and analysis of the model resolution matrix. The small inter-station spacing (average of similar to 15 km within the SWATH-D network) allowed us to image crustal structure at unprecedented resolution across a key part of the Alps. The derived P velocity model revealed a highly heterogeneous crustal structure in the target area. One of the main findings is that the lower crust is thickened, forming a bulge at 30-50 km depth just south of and beneath the Periadriatic Fault and the Tauern Window. This indicates that the lower crust decoupled both from its mantle substratum as well as from its upper crust. The Moho, taken to be the iso-velocity contour of Vp = 7.25 km/s, agrees with the Moho depth from previous studies in the European and Adriatic forelands. It is shallower on the Adriatic side than on the European side. This is interpreted to indicate that the European Plate is subducted beneath the Adriatic Plate in the Eastern and eastern Southern Alps. KW - European Alps KW - crustal structure KW - subduction KW - seismic tomography KW - body waves Y1 - 2022 U6 - https://doi.org/10.1029/2021JB023160 SN - 2169-9313 SN - 2169-9356 VL - 127 IS - 2 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Jozi Najafabadi, Azam A1 - Haberland, Christian A1 - Ryberg, Trond A1 - Verwater, Vincent F. A1 - Breton, Eline le A1 - Handy, Mark R. A1 - Weber, Michael T1 - Relocation of earthquakes in the southern and eastern Alps (Austria, Italy) recorded by the dense, temporary SWATH-D network using a Markov chain Monte Carlo inversion JF - Solid earth : SE ; an interaktive open access journal of the European Geosciences Union N2 - In this study, we analyzed a large seismological dataset from temporary and permanent networks in the southern and eastern Alps to establish high-precision hypocenters and 1-D V-P and V-P/V-S models. The waveform data of a subset of local earthquakes with magnitudes in the range of 1-4.2 M-L were recorded by the dense, temporary SWATH-D network and selected stations of the AlpArray network between September 2017 and the end of 2018. The first arrival times of P and S waves of earthquakes are determined by a semi-automatic procedure. We applied a Markov chain Monte Carlo inversion method to simultaneously calculate robust hypocenters, a 1-D velocity model, and station corrections without prior assumptions, such as initial velocity models or earthquake locations. A further advantage of this method is the derivation of the model parameter uncertainties and noise levels of the data. The precision estimates of the localization procedure is checked by inverting a synthetic travel time dataset from a complex 3-D velocity model and by using the real stations and earthquakes geometry. The location accuracy is further investigated by a quarry blast test. The average uncertainties of the locations of the earthquakes are below 500m in their epicenter and similar to 1.7 km in depth. The earthquake distribution reveals seismicity in the upper crust (0-20 km), which is characterized by pronounced clusters along the Alpine frontal thrust, e.g., the Friuli-Venetia (FV) region, the Giudicarie-Lessini (GL) and Schio-Vicenza domains, the Austroalpine nappes, and the Inntal area. Some seismicity also occurs along the Periadriatic Fault. The general pattern of seismicity reflects head-on convergence of the Adriatic indenter with the Alpine orogenic crust. The seismicity in the FV and GL regions is deeper than the modeled frontal thrusts, which we interpret as indication for southward propagation of the southern Alpine deformation front (blind thrusts). Y1 - 2021 U6 - https://doi.org/10.5194/se-12-1087-2021 SN - 1869-9529 VL - 12 IS - 5 SP - 1087 EP - 1109 PB - Copernicus CY - Göttingen ER -