TY - GEN A1 - Cohen, Abby A1 - Campisano, Christopher A1 - Arrowsmith, J. Ramon A1 - Asrat, Asfawossen A1 - Behrensmeyer, A. K. A1 - Deino, A. A1 - Feibel, C. A1 - Hill, A. A1 - Johnson, R. A1 - Kingston, J. A1 - Lamb, Henry F. A1 - Lowenstein, T. A1 - Noren, A. A1 - Olago, D. A1 - Owen, Richard Bernhart A1 - Potts, R. A1 - Reed, Kate A1 - Renaut, R. A1 - Schäbitz, F. A1 - Tiercelin, J.-J. A1 - Trauth, Martin H. A1 - Wynn, J. A1 - Ivory, S. A1 - Brady, K. A1 - O’Grady, R. A1 - Rodysill, J. A1 - Githiri, J. A1 - Russell, Joellen A1 - Foerster, Verena A1 - Dommain, René A1 - Rucina, J. S. A1 - Deocampo, D. A1 - Russell, J. A1 - Billingsley, A. A1 - Beck, C. A1 - Dorenbeck, G. A1 - Dullo, L. A1 - Feary, D. A1 - Garello, D. A1 - Gromig, R. A1 - Johnson, T. A1 - Junginger, Annett A1 - Karanja, M. A1 - Kimburi, E. A1 - Mbuthia, A. A1 - McCartney, Tannis A1 - McNulty, E. A1 - Muiruri, V. A1 - Nambiro, E. A1 - Negash, E. W. A1 - Njagi, D. A1 - Wilson, J. N. A1 - Rabideaux, N. A1 - Raub, Timothy A1 - Sier, Mark Jan A1 - Smith, P. A1 - Urban, J. A1 - Warren, M. A1 - Yadeta, M. A1 - Yost, Chad A1 - Zinaye, B. T1 - The Hominin Sites and Paleolakes Drilling Project BT - inferring the environmental context of human evolution from eastern African rift lake deposits T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 611 KW - Turkana-Basin KW - Adar formation KW - climate-change KW - olorgesailie formation KW - Southern Ethiopia KW - global climate KW - Kenya Rift KW - Pleistocene KW - variability KW - patterns Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412498 IS - 611 ER - TY - JOUR A1 - Trauth, Martin H. A1 - Asrat, Asfawossen A1 - Düsing, Walter A1 - Foerster, Verena A1 - Krämer, K. Hauke A1 - Marwan, Norbert A1 - Maslin, Mark A. A1 - Schäbitz, Frank T1 - Classifying past climate change in the Chew Bahir basin, southern Ethiopia, using recurrence quantification analysis JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - The Chew Bahir Drilling Project (CBDP) aims to test possible linkages between climate and evolution in Africa through the analysis of sediment cores that have recorded environmental changes in the Chew Bahir basin. In this statistical project we consider the Chew Bahir palaeolake to be a dynamical system consisting of interactions between its different components, such as the waterbody, the sediment beneath lake, and the organisms living within and around the lake. Recurrence is a common feature of such dynamical systems, with recurring patterns in the state of the system reflecting typical influences. Identifying and defining these influences contributes significantly to our understanding of the dynamics of the system. Different recurring changes in precipitation, evaporation, and wind speed in the Chew Bahir basin could result in similar (but not identical) conditions in the lake (e.g., depth and area of the lake, alkalinity and salinity of the lake water, species assemblages in the water body, and diagenesis in the sediments). Recurrence plots (RPs) are graphic displays of such recurring states within a system. Measures of complexity were subsequently introduced to complement the visual inspection of recurrence plots, and provide quantitative descriptions for use in recurrence quantification analysis (RQA). We present and discuss herein results from an RQA on the environmental record from six short (< 17 m) sediment cores collected during the CBDP, spanning the last 45 kyrs. The different types of variability and transitions in these records were classified to improve our understanding of the response of the biosphere to climate change, and especially the response of humans in the area. KW - Paleoclimate dynamics KW - Eastern Africa KW - Pleistocene KW - Holocene KW - Time-series analysis KW - Recurrence plot Y1 - 2019 U6 - https://doi.org/10.1007/s00382-019-04641-3 SN - 0930-7575 SN - 1432-0894 VL - 53 IS - 5-6 SP - 2557 EP - 2572 PB - Springer CY - New York ER -