TY - THES A1 - Dahmani, Ismail T1 - Influenza A virus matrix protein M1 T1 - Influenza-A-Virus-Matrixprotein M1 BT - structural determinants of membrane binding and protein- induced deformation BT - strukturelle Determinanten der Membranbindung und protein-induzierte Deformation N2 - Influenza A virus (IAV) is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. During the viral assembly process in the infected cells, the plasma membrane (PM) has to bend in localized regions into a vesicle towards the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. M1 is the most abundant protein in IAV particles. It plays an important role in virus assembly and budding at the PM. M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. However, the details of M1 interactions with the cellular PM, as well as M1-mediated membrane bending at the budozone, have not been clarified. In this work, we used several experimental approaches to analyze M1-lipids and M1-M1 interactions. By performing SPR analysis, we quantified membrane association for full-length M1 and different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region). This allowed us to obtain novel information on the protein regions mediating M1 binding to membranes. By using fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), and three-dimensional (3D) tomography (cryo-ET), we showed that M1 is indeed able to cause membrane deformation on vesicles containing negatively-charged lipids, in the absence of other viral components. Further, sFCS analysis proved that simple protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1-M1 interactions and multimer formation are required to alter the bilayer three-dimensional structure through the formation of a protein scaffold. Finally, to mimic the budding mechanism in cells that arise by the lateral organization of the virus membrane components on lipid raft domains, we created vesicles with lipid domains. Our results showed that local binding of M1 to spatial confined acidic lipids within membrane domains of vesicles led to local M1 inward curvature. N2 - Das Influenza-A-Virus (IAV) ist ein Erreger, der für schwere saisonale Epidemien verantwortlich ist, die jedes Jahr Menschen und Tiere bedrohen. Während des viralen Assemblierungsprozesses in den infizierten Zellen muss sich die Plasmamembran (PM) an bestimmten Stellen zu einem Vesikel zur extrazellulären Seite biegen. Studien an zellulären Modellen haben ergeben, dass verschiedene virale Proteine (einschließlich M1) für die Induktion der Membrankrümmung in diesem Zusammenhang verantwortlich sein könnten, ein eindeutiger Konsens wurde jedoch nicht erreicht. M1 ist das am häufigsten vorkommende Protein in IAV-Partikeln. Es spielt eine wichtige Rolle bei der Virusassemblierung und Knospung. M1 wird zur Wirtszellmembran rekrutiert, wo es sich mit Lipiden und anderen viralen Proteinen assoziiert. Die Einzelheiten der Interaktionen von M1 mit der zellulären PM sowie die M1-vermittelte Membranverbiegung am Ort der Virusfreisetzung sind jedoch noch nicht geklärt. In dieser Arbeit wurden mehrere experimentelle Ansätze zur Analyse von M1-Lipiden und M1-M1 Wechselwirkungen untersucht. Mittels SPR-Analyse wurde die Membranassoziation für M1 in voller Länge und verschiedene gentechnisch veränderte M1-Konstrukte (d. h. N- und C-terminal verkürzte Konstrukte und eine Mutante der polybasischen Region) quantifiziert; so konnten neue Erkenntnisse über die Proteinregionen, die die Bindung von M1 an Membranen steuern, gewonnen werden. Mit Hilfe der Fluoreszenzmikroskopie, kryogener Transmissionselektronenmikroskopie (cryo-TEM) und dreidimensionaler (3D) Tomographie (cryo-ET) konnten wir zeigen, dass M1 tatsächlich in der Lage ist, die Membran von Vesikeln, die negativ geladene Lipide enthalten, zu deformieren (und zwar ohne andere virale Komponenten). Außerdem bewies die sFCS-Analyse, dass eine einfache Proteinbindung nicht ausreicht, um eine Umstrukturierung der Membran zu bewirken. Vielmehr scheint es, dass stabile M1-M1-Wechselwirkungen und die Bildung von Multimeren erforderlich sind, um die dreidimensionale Struktur der Doppelschicht Struktur durch die Bildung eines Proteingerüsts zu verändern. Um schließlich den Knospungsmechanismus zu imitieren, der durch die laterale Organisation der Virusmembrankomponenten auf Lipid-Raft-Domänen entsteht, haben wir Vesikel mit Lipiddomänen erzeugt. Unsere Ergebnisse zeigten, dass die lokale Bindung von M1 an räumlich begrenzte saure Lipide innerhalb der Membrandomänen der Vesikel zu einer lokalen Krümmung von M1 nach innen führt. KW - Influenza A virus KW - Influenza KW - Pathogen KW - Lipids KW - Epidemic KW - Epidemics KW - Plasma membrane KW - Viral assembly KW - Virus KW - Vesicle KW - Giant Vesicles KW - Budozone KW - M1-M1 interaction KW - Virion KW - Membrane deformation KW - IAV particles KW - membrane binding KW - M1-lipids KW - protein binding KW - GUV KW - Giant unilamellar vesicles KW - Budozone KW - Epidemie KW - Epidemien KW - GUV KW - Riesenvesikel KW - riesige unilamellare Vesikel KW - IAV-Partikel KW - Influenza KW - Influenza-A-Virus KW - Lipide KW - M1-M1-Interaktion KW - M1-Lipide KW - Membrandeformation KW - Pathogen KW - Plasmamembran KW - Vesikel KW - Virusassemblierung, Virion KW - Virus KW - Membranbindung KW - Proteinbindung Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-527409 ER - TY - GEN A1 - Dahmani, Ismail A1 - Ludwig, Kai A1 - Chiantia, Salvatore T1 - Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The matrix protein M1 of the Influenza A virus (IAV) is supposed to mediate viral assembly and budding at the plasma membrane (PM) of infected cells. In order for a new viral particle to form, the PM lipid bilayer has to bend into a vesicle toward the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. In the present study, we use a combination of fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), cryo-electron tomography (cryo-ET) and scanning fluorescence correlation spectroscopy (sFCS) to investigate M1-induced membrane deformation in biophysical models of the PM. Our results indicate that M1 is indeed able to cause membrane curvature in lipid bilayers containing negatively charged lipids, in the absence of other viral components. Furthermore, we prove that protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1–M1 interactions and multimer formation are required in order to alter the bilayer three-dimensional structure, through the formation of a protein scaffold. Finally, our results suggest that, in a physiological context,M1-induced membrane deformation might be modulated by the initial bilayer curvature and the lateral organization of membrane components (i.e. the presence of lipid domains). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 768 KW - confocal microscopy KW - influenza KW - lipid membranes KW - membranes KW - protein-protein interactions KW - viral matrix proteins Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438689 SN - 1866-8372 IS - 768 ER - TY - JOUR A1 - Dahmani, Ismail A1 - Ludwig, Kai A1 - Chiantia, Salvatore T1 - Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization JF - Bioscience Reports N2 - The matrix protein M1 of the Influenza A virus (IAV) is supposed to mediate viral assembly and budding at the plasma membrane (PM) of infected cells. In order for a new viral particle to form, the PM lipid bilayer has to bend into a vesicle toward the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. In the present study, we use a combination of fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), cryo-electron tomography (cryo-ET) and scanning fluorescence correlation spectroscopy (sFCS) to investigate M1-induced membrane deformation in biophysical models of the PM. Our results indicate that M1 is indeed able to cause membrane curvature in lipid bilayers containing negatively charged lipids, in the absence of other viral components. Furthermore, we prove that protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1–M1 interactions and multimer formation are required in order to alter the bilayer three-dimensional structure, through the formation of a protein scaffold. Finally, our results suggest that, in a physiological context,M1-induced membrane deformation might be modulated by the initial bilayer curvature and the lateral organization of membrane components (i.e. the presence of lipid domains). KW - confocal microscopy KW - influenza KW - lipid membranes KW - membranes KW - protein-protein interactions KW - viral matrix proteins Y1 - 2019 U6 - https://doi.org/10.1042/BSR20191024 SN - 0144-8463 SN - 1573-4935 VL - 39 IS - 8 PB - Portland Press CY - Colchester ER - TY - JOUR A1 - Dey, Pradip A1 - Bergmann, Tobias A1 - Cuellar-Camacho, Jose Luis A1 - Ehrmann, Svenja A1 - Chowdhury, Mohammad Suman A1 - Zhang, Minze A1 - Dahmani, Ismail A1 - Haag, Rainer A1 - Azad, Walid T1 - Multivalent flexible nanogels exhibit broad-spectrum antiviral activity by blocking virus entry JF - ACS nano N2 - The entry process of viruses into host cells is complex and involves stable but transient multivalent interactions with different cell surface receptors. The initial contact of several viruses begins with attachment to heparan sulfate (HS) proteoglycans on the cell surface, which results in a cascade of events that end up with virus entry. The development of antiviral agents based on multivalent interactions to shield virus particles and block initial interactions with cellular receptors has attracted attention in antiviral research. Here, we designed nanogels with different degrees of flexibility based on dendritic polyglycerol sulfate to mimic cellular HS. The designed nanogels are nontoxic and broad-spectrum, can multivalently interact with viral glycoproteins, shield virus surfaces, and efficiently block infection. We also visualized virus-nanogel interactions as well as the uptake of nanogels by the cells through clathrin-mediated endocytosis using confocal microscopy. As many human viruses attach to the cells through HS moieties, we introduce our flexible nanogels as robust inhibitors for these viruses. KW - multivalent KW - herpes simplex virus KW - heparan sulfate KW - nanoparticles KW - click chemistry KW - polyglycerol Y1 - 2018 U6 - https://doi.org/10.1021/acsnano.8b01616 SN - 1936-0851 SN - 1936-086X VL - 12 IS - 7 SP - 6429 EP - 6442 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Höfer, C. T. A1 - Di Lella, S. A1 - Dahmani, Ismail A1 - Jungnick, N. A1 - Bordag, N. A1 - Bobone, Sara A1 - Huang, Q. A1 - Keller, S. A1 - Herrmann, A. A1 - Chiantia, Salvatore T1 - Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes JF - Biochimica et biophysica acta : Biomembranes N2 - Influenza A virus is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. One of the ten major proteins encoded by the viral genome, the matrix protein M1, is abundantly produced in infected cells and plays a structural role in determining the morphology of the virus. During assembly of new viral particles, M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. The structure of M1 is only partially known. In particular, structural details of M1 interactions with the cellular plasma membrane as well as M1 protein interactions and multimerization have not been clarified, yet. In this work, we employed a set of complementary experimental and theoretical tools to tackle these issues. Using raster image correlation, surface plasmon resonance and circular dichroism spectroscopies, we quantified membrane association and oligomerization of full-length M1 and of different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region, residues 95-105). Furthermore, we report novel information on structural changes in M1 occurring upon binding to membranes. Our experimental results are corroborated by an all-atom model of the full-length M1 protein bound to a negatively charged lipid bilayer. KW - Virus assembly KW - Protein-lipid interaction KW - Fluorescence microscopy KW - SPR KW - CD spectroscopy KW - Influenza A virus Y1 - 2019 U6 - https://doi.org/10.1016/j.bbamem.2019.03.013 SN - 0005-2736 SN - 1879-2642 VL - 1861 IS - 6 SP - 1123 EP - 1134 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Höfer, Chris Tina A1 - Di Lella, Santiago A1 - Dahmani, Ismail A1 - Jungnick, Nadine A1 - Bordag, Natalie A1 - Bobone, Sara A1 - Huan, Q. A1 - Keller, S. A1 - Herrmann, A. A1 - Chiantia, Salvatore T1 - Corrigendum to: Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes (Biochimica et Biophysica Acta (BBA) - Biomembranes. - 1861, (2019), pg 1123-1134) T2 - Biochimica et biophysica acta : Biomembranes Y1 - 2019 U6 - https://doi.org/10.1016/j.bbamem.2019.07.002 SN - 0005-2736 SN - 1879-2642 VL - 1861 IS - 10 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kolyvushko, Oleksandr A1 - Latzke, Juliane A1 - Dahmani, Ismail A1 - Osterrieder, Nikolaus A1 - Chiantia, Salvatore A1 - Azab, Walid T1 - Differentially-charged liposomes interact with alphaherpesviruses and interfere with virus entry JF - Pathogens N2 - Exposure of phosphatidylserine (PS) in the outer leaflet of the plasma membrane is induced by infection with several members of the Alphaherpesvirinae subfamily. There is evidence that PS is used by the equine herpesvirus type 1 (EHV-1) during entry, but the exact role of PS and other phospholipids in the entry process remains unknown. Here, we investigated the interaction of differently charged phospholipids with virus particles and determined their influence on infection. Our data show that liposomes containing negatively charged PS or positively charged DOTAP (N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium) inhibited EHV-1 infection, while neutral phosphatidylcholine (PC) had no effect. Inhibition of infection with PS was transient, decreased with time, and was dose dependent. Our findings indicate that both cationic and anionic phospholipids can interact with the virus and reduce infectivity, while, presumably, acting through different mechanisms. Charged phospholipids were found to have antiviral effects and may be used to inhibit EHV-1 infection. KW - alphaherpesvirus KW - EHV-1 KW - phosphatidylserine KW - inhibition KW - pathogen host KW - interaction Y1 - 2020 U6 - https://doi.org/10.3390/pathogens9050359 SN - 2076-0817 VL - 9 IS - 5 PB - MDPI CY - Basel ER - TY - GEN A1 - Kolyvushko, Oleksandr A1 - Latzke, Juliane A1 - Dahmani, Ismail A1 - Osterrieder, Nikolaus A1 - Chiantia, Salvatore A1 - Azab, Walid T1 - Differentially-charged liposomes interact with alphaherpesviruses and interfere with virus entry T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Exposure of phosphatidylserine (PS) in the outer leaflet of the plasma membrane is induced by infection with several members of the Alphaherpesvirinae subfamily. There is evidence that PS is used by the equine herpesvirus type 1 (EHV-1) during entry, but the exact role of PS and other phospholipids in the entry process remains unknown. Here, we investigated the interaction of differently charged phospholipids with virus particles and determined their influence on infection. Our data show that liposomes containing negatively charged PS or positively charged DOTAP (N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium) inhibited EHV-1 infection, while neutral phosphatidylcholine (PC) had no effect. Inhibition of infection with PS was transient, decreased with time, and was dose dependent. Our findings indicate that both cationic and anionic phospholipids can interact with the virus and reduce infectivity, while, presumably, acting through different mechanisms. Charged phospholipids were found to have antiviral effects and may be used to inhibit EHV-1 infection. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1088 KW - alphaherpesvirus KW - EHV-1 KW - phosphatidylserine KW - inhibition KW - pathogen host interaction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471895 SN - 1866-8372 IS - 1088 ER -