TY - JOUR A1 - Coumou, Dim A1 - Lehmann, Jascha A1 - Beckmann, Johanna T1 - The weakening summer circulation in the Northern Hemisphere mid-latitudes JF - Science N2 - Rapid warming in the Arctic could influence mid-latitude circulation by reducing the poleward temperature gradient. The largest changes are generally expected in autumn or winter, but whether significant changes have occurred is debated. Here we report significant weakening of summer circulation detected in three key dynamical quantities: (i) the zonal-mean zonal wind, (ii) the eddy kinetic energy (EKE), and (iii) the amplitude of fast-moving Rossby waves. Weakening of the zonal wind is explained by a reduction in the poleward temperature gradient. Changes in Rossby waves and EKE are consistent with regression analyses of climate model projections and changes over the seasonal cycle. Monthly heat extremes are associated with low EKE, and thus the observed weakening might have contributed to more persistent heat waves in recent summers. Y1 - 2015 U6 - https://doi.org/10.1126/science.1261768 SN - 0036-8075 SN - 1095-9203 VL - 348 IS - 6232 SP - 324 EP - 327 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Di Capua, Giorgia A1 - Coumou, Dim T1 - Changes in meandering of the Northern Hemisphere circulation JF - Environmental research letters N2 - Strong waves in the mid-latitude circulation have been linked to extreme surface weather and thus changes in waviness could have serious consequences for society. Several theories have been proposed which could alter waviness, including tropical sea surface temperature anomalies or rapid climate change in the Arctic. However, so far it remains unclear whether any changes in waviness have actually occurred. Here we propose a novel meandering index which captures the maximum waviness in geopotential height contours at any given day, using all information of the full spatial position of each contour. Data are analysed on different time scale (from daily to 11 day running means) and both on hemispheric and regional scales. Using quantile regressions, we analyse how seasonal distributions of this index have changed over 1979-2015. The most robust changes are detected for autumn which has seen a pronounced increase in strongly meandering patterns at the hemispheric level as well as over the Eurasian sector. In summer for both the hemisphere and the Eurasian sector, significant downward trends in meandering are detected on daily timescales which is consistent with the recently reported decrease in summer storm track activity. The American sector shows the strongest increase in meandering in the warm season: in particular for 11 day running mean data, indicating enhanced amplitudes of quasi-stationary waves. Our findings have implications for both the occurrence of recent cold spells and persistent heat waves in the mid-latitudes. KW - Rossby waves KW - climate change KW - extreme events KW - mid-latitudes flow Y1 - 2016 U6 - https://doi.org/10.1088/1748-9326/11/9/094028 SN - 1748-9326 VL - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kornhuber, Kai A1 - Petoukhov, Vladimir A1 - Karoly, D. A1 - Petri, Stefan A1 - Rahmstorf, Stefan A1 - Coumou, Dim T1 - Summertime Planetary Wave Resonance in the Northern and Southern Hemispheres JF - Journal of climate Y1 - 2017 U6 - https://doi.org/10.1175/JCLI-D-16-0703.1 SN - 0894-8755 SN - 1520-0442 VL - 30 SP - 6133 EP - 6150 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Kornhuber, Kai A1 - Petoukhov, Vladimir A1 - Petri, Stefan A1 - Rahmstorf, Stefan A1 - Coumou, Dim T1 - Evidence for wave resonance as a key mechanism for generating high-amplitude quasi-stationary waves in boreal summer JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - Several recent northern hemisphere summer extremes have been linked to persistent high-amplitude wave patterns (e.g. heat waves in Europe 2003, Russia 2010 and in the US 2011, Floods in Pakistan 2010 and Europe 2013). Recently quasi-resonant amplification (QRA) was proposed as a mechanism that, when certain dynamical conditions are fulfilled, can lead to such high-amplitude wave events. Based on these resonance conditions a detection scheme to scan reanalysis data for QRA events in boreal summer months was implemented. With this objective detection scheme we analyzed the occurrence and duration of QRA events and the associated atmospheric flow patterns in 1979-2015 reanalysis data. We detect a total number of 178 events for wave 6, 7 and 8 and find that during roughly one-third of all high amplitude events QRA conditions were met for respective waves. Our analysis reveals a significant shift for quasi-stationary waves 6 and 7 towards high amplitudes during QRA events, lagging first QRA-detection by typically one week. The results provide further evidence for the validity of the QRA hypothesis and its important role in generating high amplitude waves in boreal summer. KW - Rossby waves KW - Wave resonance KW - Atmospheric dynamics KW - Extreme weather Y1 - 2016 U6 - https://doi.org/10.1007/s00382-016-3399-6 SN - 0930-7575 SN - 1432-0894 VL - 49 SP - 1961 EP - 1979 PB - Springer CY - New York ER - TY - JOUR A1 - Kretschmer, Marlene A1 - Cohen, Judah A1 - Matthias, Vivien A1 - Runge, Jakob A1 - Coumou, Dim T1 - The different stratospheric influence on cold-extremes in Eurasia and North America JF - npj Climate and Atmospheric Science N2 - The stratospheric polar vortex can influence the tropospheric circulation and thereby winter weather in the mid-latitudes. Weak vortex states, often associated with sudden stratospheric warmings (SSW), have been shown to increase the risk of cold-spells especially over Eurasia, but its role for North American winters is less clear. Using cluster analysis, we show that there are two dominant patterns of increased polar cap heights in the lower stratosphere. Both patterns represent a weak polar vortex but they are associated with different wave mechanisms and different regional tropospheric impacts. The first pattern is zonally symmetric and associated with absorbed upward-propagating wave activity, leading to a negative phase of the North Atlantic Oscillation (NAO) and cold-air outbreaks over northern Eurasia. This coupling mechanism is well-documented in the literature and is consistent with the downward migration of the northern annular mode (NAM). The second pattern is zonally asymmetric and linked to downward reflected planetary waves over Canada followed by a negative phase of the Western Pacific Oscillation (WPO) and cold-spells in Central Canada and the Great Lakes region. Causal effect network (CEN) analyses confirm the atmospheric pathways associated with this asymmetric pattern. Moreover, our findings suggest the reflective mechanism to be sensitive to the exact region of upward wave-activity fluxes and to be state-dependent on the strength of the vortex. Identifying the causal pathways that operate on weekly to monthly timescales can pave the way for improved sub-seasonal to seasonal forecasting of cold spells in the mid-latitudes. Y1 - 2018 U6 - https://doi.org/10.1038/s41612-018-0054-4 SN - 2397-3722 VL - 1 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Kretschmer, Marlene A1 - Coumou, Dim A1 - Agel, Laurie A1 - Barlow, Mathew A1 - Tziperman, Eli A1 - Cohen, Judah T1 - More-Persistent weak stratospheric polar vortex states linked to cold extremes JF - Bulletin of the American Meteorological Society N2 - The extratropical stratosphere in boreal winter is characterized by a strong circumpolar westerly jet, confining the coldest temperatures at high latitudes. The jet, referred to as the stratospheric polar vortex, is predominantly zonal and centered around the pole; however, it does exhibit large variability in wind speed and location. Previous studies showed that a weak stratospheric polar vortex can lead to cold-air outbreaks in the midlatitudes, but the exact relationships and mechanisms are unclear. Particularly, it is unclear whether stratospheric variability has contributed to the observed anomalous cooling trends in midlatitude Eurasia. Using hierarchical clustering, we show that over the last 37 years, the frequency of weak vortex states in mid- to late winter (January and February) has increased, which was accompanied by subsequent cold extremes in midlatitude Eurasia. For this region, 60% of the observed cooling in the era of Arctic amplification, that is, since 1990, can be explained by the increased frequency of weak stratospheric polar vortex states, a number that increases to almost 80% when El Nino-Southern Oscillation (ENSO) variability is included as well. Y1 - 2018 U6 - https://doi.org/10.1175/BAMS-D-16-0259.1 SN - 0003-0007 SN - 1520-0477 VL - 99 IS - 1 SP - 49 EP - 60 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Kretschmer, Marlene A1 - Coumou, Dim A1 - Donges, Jonathan Friedemann A1 - Runge, Jakob T1 - Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation JF - Journal of climate N2 - In recent years, the Northern Hemisphere midlatitudes have suffered from severe winters like the extreme 2012/13 winter in the eastern United States. These cold spells were linked to a meandering upper-tropospheric jet stream pattern and a negative Arctic Oscillation index (AO). However, the nature of the drivers behind these circulation patterns remains controversial. Various studies have proposed different mechanisms related to changes in the Arctic, most of them related to a reduction in sea ice concentrations or increasing Eurasian snow cover. Here, a novel type of time series analysis, called causal effect networks (CEN), based on graphical models is introduced to assess causal relationships and their time delays between different processes. The effect of different Arctic actors on winter circulation on weekly to monthly time scales is studied, and robust network patterns are found. Barents and Kara sea ice concentrations are detected to be important external drivers of the midlatitude circulation, influencing winter AO via tropospheric mechanisms and through processes involving the stratosphere. Eurasia snow cover is also detected to have a causal effect on sea level pressure in Asia, but its exact role on AO remains unclear. The CEN approach presented in this study overcomes some difficulties in interpreting correlation analyses, complements model experiments for testing hypotheses involving teleconnections, and can be used to assess their validity. The findings confirm that sea ice concentrations in autumn in the Barents and Kara Seas are an important driver of winter circulation in the midlatitudes. Y1 - 2016 U6 - https://doi.org/10.1175/JCLI-D-15-0654.1 SN - 0894-8755 SN - 1520-0442 VL - 29 SP - 4069 EP - 4081 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Kretschmer, Marlene A1 - Runge, Jakob A1 - Coumou, Dim T1 - Early prediction of extreme stratospheric polar vortex states based on causal precursors JF - Geophysical research letters N2 - Variability in the stratospheric polar vortex (SPV) can influence the tropospheric circulation and thereby winter weather. Early predictions of extreme SPV states are thus important to improve forecasts of winter weather including cold spells. However, dynamical models are usually restricted in lead time because they poorly capture low-frequency processes. Empirical models often suffer from overfitting problems as the relevant physical processes and time lags are often not well understood. Here we introduce a novel empirical prediction method by uniting a response-guided community detection scheme with a causal discovery algorithm. This way, we objectively identify causal precursors of the SPV at subseasonal lead times and find them to be in good agreement with known physical drivers. A linear regression prediction model based on the causal precursors can explain most SPV variability (r(2)=0.58), and our scheme correctly predicts 58% (46%) of extremely weak SPV states for lead times of 1-15 (16-30)days with false-alarm rates of only approximately 5%. Our method can be applied to any variable relevant for (sub)seasonal weather forecasts and could thus help improving long-lead predictions. KW - stratosphere KW - stratospheric polar vortex KW - subseasonal predictions KW - causal discovery algorithm KW - winter circulation Y1 - 2017 U6 - https://doi.org/10.1002/2017GL074696 SN - 0094-8276 SN - 1944-8007 VL - 44 SP - 8592 EP - 8600 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Lehmann, Jascha A1 - Coumou, Dim T1 - The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes JF - Scientific reports N2 - Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central-to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. Y1 - 2015 U6 - https://doi.org/10.1038/srep17491 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Lehmann, Jascha A1 - Coumou, Dim A1 - Frieler, Katja T1 - Increased record-breaking precipitation events under global warming JF - Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change N2 - In the last decade record-breaking rainfall events have occurred in many places around the world causing severe impacts to human society and the environment including agricultural losses and floodings. There is now medium confidence that human-induced greenhouse gases have contributed to changes in heavy precipitation events at the global scale. Here, we present the first analysis of record-breaking daily rainfall events using observational data. We show that over the last three decades the number of record-breaking events has significantly increased in the global mean. Globally, this increase has led to 12 % more record-breaking rainfall events over 1981-2010 compared to those expected in stationary time series. The number of record-breaking rainfall events peaked in 2010 with an estimated 26 % chance that a new rainfall record is due to long-term climate change. This increase in record-breaking rainfall is explained by a statistical model which accounts for the warming of air and associated increasing water holding capacity only. Our results suggest that whilst the number of rainfall record-breaking events can be related to natural multi-decadal variability over the period from 1901 to 1980, observed record-breaking rainfall events significantly increased afterwards consistent with rising temperatures. Y1 - 2015 U6 - https://doi.org/10.1007/s10584-015-1434-y SN - 0165-0009 SN - 1573-1480 VL - 132 IS - 4 SP - 501 EP - 515 PB - Springer CY - Dordrecht ER -