TY - GEN A1 - López de Guereñu, Anna A1 - Bastian, Philipp A1 - Wessig, Pablo A1 - John, Leonard A1 - Kumke, Michael Uwe T1 - Energy transfer between tm-doped upconverting nanoparticles and a small organic dye with large stokes shift T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions within the particles, and complicated energy transfer processes within the UCNP, there are still many questions to be answered. In this study, four types of core and core-shell NaYF4-based UCNP co-doped with Yb3+ and Tm3+ as sensitizer and activator, respectively, were investigated as donors for the Methyl 5-(8-decanoylbenzo[1,2-d:4,5-d ']bis([1,3]dioxole)-4-yl)-5-oxopentanoate (DBD-6) dye. The possibility of resonance energy transfer (RET) between UCNP and the DBD-6 attached to their surface was demonstrated based on the comparison of luminescence intensities, band ratios, and decay kinetics. The architecture of UCNP influenced both the luminescence properties and the energy transfer to the dye: UCNP with an inert shell were the brightest, but their RET efficiency was the lowest (17%). Nanoparticles with Tm3+ only in the shell have revealed the highest RET efficiencies (up to 51%) despite the compromised luminescence due to surface quenching. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 961 KW - resonance energy transfer KW - DBD dye KW - core shell UCNP KW - time-resolved luminescence Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472240 SN - 1866-8372 IS - 961 ER - TY - JOUR A1 - López de Guereñu, Anna A1 - Bastian, Philipp A1 - Wessig, Pablo A1 - John, Leonard A1 - Kumke, Michael Uwe T1 - Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift JF - Biosensors : open access journal N2 - Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions within the particles, and complicated energy transfer processes within the UCNP, there are still many questions to be answered. In this study, four types of core and core-shell NaYF4-based UCNP co-doped with Yb3+ and Tm3+ as sensitizer and activator, respectively, were investigated as donors for the Methyl 5-(8-decanoylbenzo[1,2-d:4,5-d ']bis([1,3]dioxole)-4-yl)-5-oxopentanoate (DBD-6) dye. The possibility of resonance energy transfer (RET) between UCNP and the DBD-6 attached to their surface was demonstrated based on the comparison of luminescence intensities, band ratios, and decay kinetics. The architecture of UCNP influenced both the luminescence properties and the energy transfer to the dye: UCNP with an inert shell were the brightest, but their RET efficiency was the lowest (17%). Nanoparticles with Tm3+ only in the shell have revealed the highest RET efficiencies (up to 51%) despite the compromised luminescence due to surface quenching. KW - resonance energy transfer KW - DBD dye KW - core shell UCNP KW - time-resolved luminescence Y1 - 2019 U6 - https://doi.org/10.3390/bios9010009 SN - 2079-6374 VL - 9 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schimka, Selina A1 - Klier, Dennis Tobias A1 - de Guerenu, Anna Lopez A1 - Bastian, Philipp A1 - Lomadze, Nino A1 - Kumke, Michael Uwe A1 - Santer, Svetlana T1 - Photo-isomerization of azobenzene containing surfactants induced by near-infrared light using upconversion nanoparticles as mediator JF - Journal of physics : Condensed matter N2 - Here we report on photo-isomerization of azobenzene containing surfactants induced during irradiation with near-infrared (NIR) light in the presence of upconversion nanoparticles (UCNPs) acting as mediator. The surfactant molecule consists of charged head group and hydrophobic tail with azobenzene group incorporated in alkyl chain. The azobenzene group can be reversible photo-isomerized between two states: trans- and cis- by irradiation with light of an appropriate wavelength. The trans-cis photo-isomerization is induced by UV light, while cis-trans isomerization proceeds either thermally in darkness, or can be accelerated by exposure to illumination with a longer wavelength typically in a blue/green range. We present the application of lanthanide doped UCNPs to successfully switch azobenzene containing surfactants from cis to trans conformation in bulk solution using NIR light. Using Tm-3(+) or Er-3(+) as activator ions, the UCNPs provide emissions in the spectral range of 450 nm < lambda(em) < 480 nm (for Tm-3(+), three and four photon induced emission) or 525 nm < lambda(em) < 545 nm (for Er-3(+), two photon induced emission), respectively. Especially for UCNPs containing Tm-3(+) a good overlap of the emissions with the absorption bands of the azobenzene is present. Under illumination of the surfactant solution with NIR light (lambda(ex) = 976 nm) in the presence of the Tm-3(+)-doped UCNPs, the relaxation time of cis-trans photo-isomerization was increased by almost 13 times compared to thermally induced isomerization. The influence of thermal heating due to the irradiation using NIR light was shown to be minor for solvents not absorbing in NIR spectral range (e.g. CHCl3) in contrast to water, which shows a distinct absorption in the NIR. KW - upconversion nanoparticles KW - azobenzene containing surfactants KW - kinetic of cis-trans isomerization Y1 - 2019 U6 - https://doi.org/10.1088/1361-648X/aafcfa SN - 0953-8984 SN - 1361-648X VL - 31 IS - 12 PB - IOP Publ. Ltd. CY - Bristol ER -