TY - JOUR A1 - Brosnan, Sarah M. A1 - Schlaad, Helmut A1 - Antonietti, Markus T1 - Aqueous Self-Assembly of Purely Hydrophilic Block Copolymers into Giant Vesicles JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Self-assembly of macromolecules is fundamental to life itself, and historically, these systems have been primitively mimicked by the development of amphiphilic systems, driven by the hydrophobic effect. Herein, we demonstrate that self-assembly of purely hydrophilic systems can be readily achieved with similar ease and success. We have synthesized double hydrophilic block copolymers from polysaccharides and poly(ethylene oxide) or poly(sarcosine) to yield high molar mass diblock copolymers through oxime chemistry. These hydrophilic materials can easily assemble into nanosized (<500nm) and microsized (>5m) polymeric vesicles depending on concentration and diblock composition. Because of the solely hydrophilic nature of these materials, we expect them to be extraordinarily water permeable systems that would be well suited for use as cellular mimics. KW - block copolymers KW - polymersomes KW - polysaccharides KW - self-assembly KW - vesicles Y1 - 2015 U6 - https://doi.org/10.1002/anie.201502100 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 33 SP - 9715 EP - 9718 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Keckeis, Philipp A1 - Zeller, Enriko A1 - Jung, Carina A1 - Besirske, Patricia A1 - Kirner, Felizitas A1 - Ruiz-Agudo, Cristina A1 - Schlaad, Helmut A1 - Cölfen, Helmut T1 - Modular toolkit of multifunctional block copoly(2-oxazoline)s for the synthesis of nanoparticles JF - Chemistry - a European journal N2 - Post-polymerization modification provides an elegant way to introduce chemical functionalities onto macromolecules to produce tailor-made materials with superior properties. This concept was adapted to well-defined block copolymers of the poly(2-oxazoline) family and demonstrated the large potential of these macromolecules as universal toolkit for numerous applications. Triblock copolymers with separated water-soluble, alkyne- and alkene-containing segments were synthesized and orthogonally modified with various low-molecular weight functional molecules by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and thiol-ene (TE) click reactions, respectively. Representative toolkit polymers were used for the synthesis of gold, iron oxide and silica nanoparticles. KW - block copolymers KW - click chemistry KW - nanoparticles KW - ring-opening KW - polymerization KW - surfactants Y1 - 2021 U6 - https://doi.org/10.1002/chem.202101327 SN - 0947-6539 SN - 1521-3765 VL - 27 IS - 32 SP - 8283 EP - 8287 PB - Wiley-VCH CY - Weinheim ER -