TY - JOUR A1 - Margirier, Audrey A1 - Braun, Jean A1 - Gautheron, Cecile A1 - Carcaillet, Julien A1 - Schwartz, Stephane A1 - Jamme, Rosella Pinna A1 - Stanley, Jessica T1 - Climate control on Early Cenozoic denudation of the Namibian margin as deduced from new thermochronological constraints JF - Earth & planetary science letters N2 - The processes that control long term landscape evolution in continental interiors and, in particular, along passive margins such as in southern Africa, are still the subject of much debate (e.g. Braun, 2018). Although today the Namibian margin is characterized by an arid climate, it has experienced climatic fluctuations during the Cenozoic and, yet, to date no study has documented the potential role of climate on its erosion history. In western Namibia, the Brandberg Massif, an erosional remnant or inselberg, provides a good opportunity to document the Cenozoic denudation history of the margin using the relationship between rock cooling or exhumation ages and their elevation. Here we provide new apatite (UThSm)/He dates on the Brandberg Inselberg that range from 151 +/- 12 to 30 +/- 2 Ma. Combined with existing apatite fission track data, they yield new constraints on the denudation history of the margin. These data document two main cooling phases since continental break-up 130 Myr ago, a rapid one (similar to 10 degrees C/Myr) following break-up and a slower one (similar to 12 degrees C/Myr) between 65 and 35 Ma. We interpret them respectively to be related to escarpment erosion following rifting and continental break-up and as a phase of enhanced denudation during the Early Eocene Climatic Optimum. We propose that during the Early Eocene Climatic Optimum chemical weathering was important and contributed significantly to the denudation of the Namibian margin and the formation of a pediplain around the Brandberg and enhanced valley incision within the massif. Additionally, aridification of the region since 35 Ma has resulted in negligible denudation rates since that time. (C) 2019 Elsevier B.V. All rights reserved. KW - climate KW - Early Eocene Climatic Optimum KW - apatite (U-Th-Sm)/He thermochronology KW - denudation KW - weathering KW - Namibian passive margin Y1 - 2019 U6 - https://doi.org/10.1016/j.epsl.2019.115779 SN - 0012-821X SN - 1385-013X VL - 527 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kober, Florian A1 - Zeilinger, Gerold A1 - Hippe, Kristina A1 - Marc, Odin A1 - Lendzioch, Theodora A1 - Grischott, Reto A1 - Christl, Marcus A1 - Kubik, Peter W. A1 - Zola, Ramiro T1 - Tectonic and lithological controls on denudation rates in the central Bolivian Andes JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - The topographic signature of a mountain belt depends on the interplay of tectonic, climatic and erosional processes, whose relative importance changes over times, while quantifying these processes and their rates at specific times remains a challenge. The eastern Andes of central Bolivia offer a natural laboratory in which such interplay has been debated. Here, we investigate the Rio Grande catchment which crosses orthogonally the eastern Andes orogen from the Eastern Cordillera into the Subandean Zone, exhibiting a catchment relief of up to 5000 m. Despite an enhanced tectonic activity in the Subandes, local relief, mean and modal slopes and channel steepness indices are largely similar compared to the Eastern Cordillera and the intervening Interandean Zone. Nevertheless, a dataset of 57 new cosmogenic 10Be and 26AI catchment wide denudation rates from the Rio Grande catchment reveals up to one order of magnitude higher denudation rates in the Subandean Zone (mean 0.8 mm/yr) compared to the upstream physiographic regions. We infer that tectonic activity in the thrusting dominated Subandean belt causes higher denudation rates based on cumulative rock uplift investigations and due to the absence of a pronounced climate gradient. Furthermore, the lower rock strength of the Subandean sedimentary units correlates with mean slopes similar to the ones of the Eastern Cordillera and Interandean Zone, highlighting the fact, that lithology and rock strength can control high denudation rates at low slopes. Low denudation rates measured at the outlet of the Rio Grande catchment (Abapo) are interpreted to be a result of a biased cosmogenic nuclide mixing that is dominated by headwater signals from the Eastern Cordillera and the Interandean zone and limited catchment sediment connectivity in the lower river reaches. Therefore, comparisons of short- (i.e., sediment yield) and millennial denudation rates require caution when postulating tectonic and/or climatic forcing without detailed studies. (C) 2015 The Authors. Published by Elsevier B.V. KW - Rio Grande KW - seismicity KW - uplift KW - rock strength KW - cosmogenic nuclides KW - denudation Y1 - 2015 U6 - https://doi.org/10.1016/j.tecto.2015.06.037 SN - 0040-1951 SN - 1879-3266 VL - 657 SP - 230 EP - 244 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Munack, Henry T1 - From phantom blocks to denudational noise BT - downwearing of the Himalaya-Tibet orogen from a multi-scale perspective BT - die Abtragung des Himalaya-Tibet Orogens aus multiskaliger Perspektive N2 - Knowing the rates and mechanisms of geomorphic process that shape the Earth’s surface is crucial to understand landscape evolution. Modern methods for estimating denudation rates enable us to quantitatively express and compare processes of landscape downwearing that can be traced through time and space—from the seemingly intact, though intensely shattered, phantom blocks of the catastrophically fragmented basal facies of giant rockslides up to denudational noise in orogen-wide data sets averaging over several millennia. This great variety of spatiotemporal scales of denudation rates is both boon and bane of geomorphic process rates. Indeed, processes of landscape downwearing can be traced far back in time, helping us to understand the Earth’s evolution. Yet, this benefit may turn into a drawback due to scaling issues if these rates are to be compared across different observation timescales. This thesis investigates the mechanisms, patterns and rates of landscape downwearing across the Himalaya-Tibet orogen. Accounting for the spatiotemporal variability of denudation processes, this thesis addresses landscape downwearing on three distinctly different spatial scales, starting off at the local scale of individual hillslopes where considerable amounts of debris are generated from rock instantaneously: Rocksliding in active mountains is a major impetus of landscape downwearing. Study I provides a systematic overview of the internal sedimentology of giant rockslide deposits and thus meets the challenge of distinguishing them from macroscopically and microscopically similar glacial deposits, tectonic fault-zone breccias, and impact breccias. This distinction is important to avoid erroneous or misleading deduction of paleoclimatic or tectonic implications. -> Grain size analysis shows that rockslide-derived micro-breccia closely resemble those from meteorite impact or tectonic faults. -> Frictionite may occur more frequently that previously assumed. -> Mössbauer-spectroscopy derived results indicate basal rock melting in the absence of water, involving short-term temperatures of >1500°C. Zooming out, Study II tracks the fate of these sediments, using the example of the upper Indus River, NW India. There we use river sand samples from the Indus and its tributaries to estimate basin-averaged denudation rates along a ~320-km reach across the Tibetan Plateau margin, to answer the question whether incision into the western Tibetan Plateau margin is currently active or not. -> We find an about one-order-of-magnitude upstream decay—from 110 to 10 mm kyr^-1—of cosmogenic Be-10-derived basin-wide denudation rates across the morphological knickpoint that marks the transition from the Transhimalayan ranges to the Tibetan Plateau. This trend is corroborated by independent bulk petrographic and heavy mineral analysis of the same samples. -> From the observation that tributary-derived basin-wide denudation rates do not increase markedly until ~150–200 km downstream of the topographic plateau margin we conclude that incision into the Tibetan Plateau is inactive. -> Comparing our postglacial Be-10-derived denudation rates to long-term (>10^6 yr) estimates from low-temperature thermochronometry, ranging from 100 to 750 mm kyr^-1, points to an order- of-magnitude decay of rates of landscape downwearing towards present. We infer that denudation rates must have been higher in the Quaternary, probably promoted by the interplay of glacial and interglacial stages. Our investigation of regional denudation patterns in the upper Indus finally is an integral part of Study III that synthesizes denudation of the Himalaya-Tibet orogen. In order to identify general and time-invariant predictors for Be-10-derived denudation rates we analyze tectonic, climatic and topographic metrics from an inventory of 297 drainage basins from various parts of the orogen. Aiming to get insight to the full response distributions of denudation rate to tectonic, climatic and topographic candidate predictors, we apply quantile regression instead of ordinary least squares regression, which has been standard analysis tool in previous studies that looked for denudation rate predictors. -> We use principal component analysis to reduce our set of 26 candidate predictors, ending up with just three out of these: Aridity Index, topographic steepness index, and precipitation of the coldest quarter of the year. -> Topographic steepness index proves to perform best during additive quantile regression. Our consequent prediction of denudation rates on the basin scale involves prediction errors that remain between 5 and 10 mm kyr^-1. -> We conclude that while topographic metrics such as river-channel steepness and slope gradient—being representative on timescales that our cosmogenic Be-10-derived denudation rates integrate over—generally appear to be more suited as predictors than climatic and tectonic metrics based on decadal records. N2 - Die Kenntnis von Raten und Mechanismen geomorphologischer Prozesse, die die Erdoberfläche gestalten, ist entscheidend für das Verständnis von quartärer Landschaftsgeschichte. Denudationsraten sind dabei das Mittel zur Quantifizierung und zum Vergleich von Oberflächenabtrag; hinweg über zeitliche und räumliche Größenordnungen – von den optisch unversehrten, jedoch durchgehend zerrütteten “Phantom Blocks” der basalen Fazies katastrophaler Bergstürze bis hin zum “Denudational Noise”, dem durchaus informativen Rauschen in Datensätzen, die über ganze Orogene und tausende Jahre von Landschaftsgeschichte integrieren. Diese große räumlich-zeitliche Variabilität von Denudationsprozessen ist Chance und Herausforderung zugleich. Zum einen können Denudationsprozesse weit in der Zeit zurückverfolgt werden, was hilft, Landschaftsgeschichte nachzuvollziehen. Andererseits hat es sich gezeigt, dass geomorphologische Prozessraten mit dem Zeitraum ihrer Beobachtung skalieren, was einen Vergleich über zeitliche Größenordnungen hinweg erschwert. Diese Dissertation untersucht in drei Studien die Mechanismen, Muster und Raten von Denudation im Himalaja-Tibet Orogen. Der räumlichen (und zeitlichen) Variabilität von Denudationsprozessen folgend beginnt diese Arbeit dort, wo bedeutende Mengen von Festgestein schlagartig in erodierbaren Schutt umgewandelt werden: Bergstürze sind ein Hauptantrieb der Abtragung von aktiven Gebirgen. Studie I systematisiert die interne Sedimentologie gigantischer Bergsturzablagerungen. Sie adressiert damit Herausforderungen durch die makro- und mikroskopische Ähnlichkeit von Bergsturzablagerungen mit glazialen Ablagerungen, tektonischen Störungsbrekkzien und Impaktbrekkzien. Ziel einer solchen Systematisierung ist die Vermeidung fehlerhafter paläoklimatischer oder -tektonischer Interpretationen. -> Bergsturzbrekkzien sind auf mikroskopischer Ebene nicht von tektonischen oder Impaktbrekkzien unterscheidbar. -> Friktionit könnte weit häufiger vorkommen, als bisher angenommen. -> Mössbauer-Spektroskopie deutet auf Temperaturen ≥ 1500° C sowie die Abwesenheit von Wasser als Schmiermittel hin. Auf der mesoskaligen Ebene von Einzugsgebieten verfolgt Studie II, am Beispiel des oberen Indus in NW Indien den Weg dieser Sedimente, denn sie geben Auskunft über beckenweite Denudationsraten, sowie Pfade und Muster des Sedimenttransports am westlichen Tibetplateaurand. Diese Informationen sollen helfen, die Mechanismen der Einschneidung großer Flüsse in das Tibetplateau, sowie den gegenwärtigen erosionalen Status des Plateaurandes zu verstehen. -> Die beckenweiten Denudationsraten in den Tributären des Indus nehmen stromabwärts – und damit über den morphologischen Tibetplateaurand hinweg – von 10 auf 110 mm kyr^-1 zu. Dieser Trend wird durch unabhängige Petrographie- und Schwermineralanalysen aus denselben Proben nachgezeichnet. -> Es zeigt sich allerdings, dass der morphologische Plateaurand und der hierfür erwartbare Anstieg der Denudationsraten um ~150–200 km versetzt sind. Hieraus schließen wir, dass der westliche Rand des Tibetischen Plateaus rezent nicht maßgeblich erodiert wird. -> Ein Vergleich unserer postglazialen Denudationsraten von kosmogenem Be-10 mit Langzeit- (>10^6 yr)-Thermochronometriedaten von 100 bis 750 mm kyr^-1 deutet auf einen spätquartären Rückgang von Denudationsraten im Transhimalaya hin. Folglich muss es früher während des Quartärs Zeiten höherer erosionaler Effizienz gegeben haben. Studie III fokussiert schließlich, in einer Analyse beckenweiter Be-10-Denudationsraten, auf Denudationsmuster und -mechanismen für das gesamte Himalaja-Tibet Orogen. Auf der Suche nach zeit-invarianten tektonischen, klimatischen oder topographischen Prädiktoren für Denudationsraten wird ein Datensatz von 297 orogenweit verteilten Einzugsgebieten untersucht. Um Einblicke in die gesamte Response-Verteilung zwischen Denudationsrate und Prädiktor zu erhalten nutzen wir – anstelle der in diesem Zusammenhang vielbenutzten Methode der kleinsten Quadrate – Quantil-Regression. -> Dafür reduzieren wir einen Satz von 26 möglichen Prädiktoren, unter Nutzung der Hauptkomponentenanalyse, auf drei Prädiktoren: Ariditätsindex, topographischer Steilheitsindex und Niederschlag des kältesten Quartals. -> Die additive Quantil-Regression dieser drei Prädiktoren zeigt, dass der Steilheitsindex die besten Ergebnisse im Sinne einer zeit-invarianten Beziehung zwischen Denudationsrate und Prädiktoren liefert. -> Zusammenfassend zeigt sich, dass topographisch basierte Prädiktoren geeigneter für die Vorhersage von kosmogenen beckenweiten Denudationsraten sind als klimatische oder tektonische Prädiktoren. Wir erklären dieses Resultat mit den jeweils über Jahrtausende integrierenden Maßzahlen für Topographie und kosmogenen Denudationsraten, und der daraus folgenden Inkompatibilität der kosmogenen Denudationsraten mit den tektonischen und klimatischen Prädiktoren, die lediglich auf Jahrzehnten von Messungen beruhen. T2 - Von Phantomblöcken zu Denudationsrauschen KW - geomorphology KW - quaternary KW - denudation KW - Himalaya-Tibet orogen KW - cosmogenic nuclides KW - rockslide KW - Geomorphologie KW - Quartär KW - Denudation KW - Himalaya-Tibet Orogen KW - kosmogene Nuklide KW - Bergsturz Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-72629 ER -