TY - INPR A1 - Seehafer, Norbert T1 - Nature of the α effect in magnetohydrodynamics N2 - It is shown that the ff effect of mean-field magnetohydrodynamics, which consists in the generation of a mean electromotive force along the mean magnetic field by turbulently fluctuating parts of velocity and magnetic field, is equivalent to the simultaneous generation of both turbulent and mean-field magnetic helicities, the generation rates being equal in magnitude and opposite in sign. In the particular case of statistically stationary and homogeneous fluctuations this implies that the ff effect can increase the energy in the mean magnetic field only under the condition that also magnetic helicity is accumulated there. T3 - NLD Preprints - 25 Y1 - 1995 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13919 ER - TY - INPR A1 - Feudel, Fred A1 - Seehafer, Norbert A1 - Schmidtmann, Olaf T1 - Fluid helicity and dynamo bifurcations N2 - The bifurcation behaviour of the 3D magnetohydrodynamic equations has been studied for external forcings of varying degree of helicity. With increasing strength of the forcing a primary non-magnetic steady state loses stability to a magnetic periodic state if the helicity exceeds a threshold value and to different non-magnetic states otherwise. T3 - NLD Preprints - 18 Y1 - 1995 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13882 ER - TY - INPR A1 - Feudel, Fred A1 - Seehafer, Norbert T1 - Bifurcations and pattern formation in a 2D Navier-Stokes fluid N2 - We report on bifurcation studies for the incompressible Navier-Stokes equations in two space dimensions with periodic boundary conditions and an external forcing of the Kolmogorov type. Fourier representations of velocity and pressure have been used to approximate the original partial differential equations by a finite-dimensional system of ordinary differential equations, which then has been studied by means of bifurcation-analysis techniques. A special route into chaos observed for increasing Reynolds number or strength of the imposed forcing is described. It includes several steady states, traveling waves, modulated traveling waves, periodic and torus solutions, as well as a period-doubling cascade for a torus solution. Lyapunov exponents and Kaplan-Yorke dimensions have been calculated to characterize the chaotic branch. While studying the dynamics of the system in Fourier space, we also have transformed solutions to real space and examined the relation between the different bifurcations in Fourier space and toplogical changes of the streamline portrait. In particular, the time-dependent solutions, such as, e.g., traveling waves, torus, and chaotic solutions, have been characterized by the associated fluid-particle motion (Lagrangian dynamics). T3 - NLD Preprints - 23 Y1 - 1995 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13907 ER - TY - INPR A1 - Feudel, Fred A1 - Seehafer, Norbert A1 - Schmidtmann, Olaf T1 - Bifurcation phenomena of the magnetofluid equations N2 - We report on bifurcation studies for the incompressible magnetohydrodynamic equations in three space dimensions with periodic boundary conditions and a temporally constant external forcing. Fourier reprsentations of velocity, pressure and magnetic field have been used to transform the original partial differential equations into systems of ordinary differential equations (ODE), to which then special numerical methods for the qualitative analysis of systems of ODE have been applied, supplemented by the simulative calculation of solutions for selected initial conditions. In a part of the calculations, in order to reduce the number of modes to be retained, the concept of approximate inertial manifolds has been applied. For varying (incereasing from zero) strength of the imposed forcing, or varying Reynolds number, respectively, time-asymptotic states, notably stable stationary solutions, have been traced. A primary non-magnetic steady state loses, in a Hopf bifurcation, stability to a periodic state with a non-vanishing magnetic field, showing the appearance of a generic dynamo effect. From now on the magnetic field is present for all values of the forcing. The Hopf bifurcation is followed by furhter, symmetry-breaking, bifurcations, leading finally to chaos. We pay particular attention to kinetic and magnetic helicities. The dynamo effect is observed only if the forcing is chosen such that a mean kinetic helicity is generated; otherwise the magnetic field diffuses away, and the time-asymptotic states are non-magnetic, in accordance with traditional kinematic dynamo theory. T3 - NLD Preprints - 9 Y1 - 1995 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13585 ER -