TY - THES A1 - Pradhan, Prajal T1 - Food demand and supply under global change T1 - Nahrungsmittelnachfrage und -Versorgung im Globalen Wandel N2 - Anthropogenic activities have transformed the Earth's environment, not only on local level, but on the planetary-scale causing global change. Besides industrialization, agriculture is a major driver of global change. This change in turn impairs the agriculture sector, reducing crop yields namely due to soil degradation, water scarcity, and climate change. However, this is a more complex issue than it appears. Crop yields can be increased by use of agrochemicals and fertilizers which are mainly produced by fossil energy. This is important to meet the increasing food demand driven by global demographic change, which is further accelerated by changes in regional lifestyles. In this dissertation, we attempt to address this complex problem exploring agricultural potential globally but on a local scale. For this, we considered the influence of lifestyle changes (dietary patterns) as well as technological progress and their effects on climate change, mainly greenhouse gas (GHG) emissions. Furthermore, we examined options for optimizing crop yields in the current cultivated land with the current cropping patterns by closing yield gaps. Using this, we investigated in a five-minute resolution the extent to which food demand can be met locally, and/or by regional and/or global trade. Globally, food consumption habits are shifting towards calorie rich diets. Due to dietary shifts combined with population growth, the global food demand is expected to increase by 60-110% between 2005 and 2050. Hence, one of the challenges to global sustainability is to meet the growing food demand, while at the same time, reducing agricultural inputs and environmental consequences. In order to address the above problem, we used several freely available datasets and applied multiple interconnected analytical approaches that include artificial neural network, scenario analysis, data aggregation and harmonization, downscaling algorithm, and cross-scale analysis. Globally, we identified sixteen dietary patterns between 1961 and 2007 with food intakes ranging from 1,870 to 3,400 kcal/cap/day. These dietary patterns also reflected changing dietary habits to meat rich diets worldwide. Due to the large share of animal products, very high calorie diets that are common in the developed world, exhibit high total per capita emissions of 3.7-6.1 kg CO2eq./day. This is higher than total per capita emissions of 1.4-4.5 kg CO2eq./day associated with low and moderate calorie diets that are common in developing countries. Currently, 40% of the global crop calories are fed to livestock and the feed calorie use is four times the produced animal calories. However, these values vary from less than 1 kcal to greater 10 kcal around the world. On the local and national scale, we found that the local and national food production could meet demand of 1.9 and 4.4 billion people in 2000, respectively. However, 1 billion people from Asia and Africa require intercontinental agricultural trade to meet their food demand. Nevertheless, these regions can become food self-sufficient by closing yield gaps that require location specific inputs and agricultural management strategies. Such strategies include: fertilizers, pesticides, soil and land improvement, management targeted on mitigating climate induced yield variability, and improving market accessibility. However, closing yield gaps in particular requires global N-fertilizer application to increase by 45-73%, P2O5 by 22-46%, and K2O by 2-3 times compare to 2010. Considering population growth, we found that the global agricultural GHG emissions will approach 7 Gt CO2eq./yr by 2050, while the global livestock feed demand will remain similar to 2000. This changes tremendously when diet shifts are also taken into account, resulting in GHG emissions of 20 Gt CO2eq./yr and an increase of 1.3 times in the crop-based feed demand between 2000 and 2050. However, when population growth, diet shifts, and technological progress by 2050 were considered, GHG emissions can be reduced to 14 Gt CO2eq./yr and the feed demand to nearly 1.8 times compare to that in 2000. Additionally, our findings shows that based on the progress made in closing yield gaps, the number of people depending on international trade can vary between 1.5 and 6 billion by 2050. In medium term, this requires additional fossil energy. Furthermore, climate change, affecting crop yields, will increase the need for international agricultural trade by 4% to 16%. In summary, three general conclusions are drawn from this dissertation. First, changing dietary patterns will significantly increase crop demand, agricultural GHG emissions, and international food trade in the future when compared to population growth only. Second, such increments can be reduced by technology transfer and technological progress that will enhance crop yields, decrease agricultural emission intensities, and increase livestock feed conversion efficiencies. Moreover, international trade dependency can be lowered by consuming local and regional food products, by producing diverse types of food, and by closing yield gaps. Third, location specific inputs and management options are required to close yield gaps. Sustainability of such inputs and management largely depends on which options are chosen and how they are implemented. However, while every cultivated land may not need to attain its potential yields to enable food security, closing yield gaps only may not be enough to achieve food self-sufficiency in some regions. Hence, a combination of sustainable implementations of agricultural intensification, expansion, and trade as well as shifting dietary habits towards a lower share of animal products is required to feed the growing population. N2 - Der Mensch beeinflusst die landwirtschaftlichen Erträge unmittelbar durch anthropogen verursachte Treiber des globalen Wandels, wie Bodenerosion, Wasserknappheit und Klimawandel, wovon er und seine Lebensmittelversorgung wiederum direkt betroffen sein werden. Einerseits steigert der Einsatz von Agrochemikalien und mithilfe fossiler Energien erzeugte Dünger die landwirtschaftlichen Erträge. Andererseits tragen Bevölkerungswachstum sowie die Tendenz zu kalorienreichen Ernährungsweisen zu einer vermehrten Nahrungsmittelnachfrage von 60-110% von 2005 bis 2050 bei. Das Decken der wachsenden Lebensmittelnachfrage bei gleichzeitiger Reduktion des landwirtschaftlichen Ressourcenverbrauchs und Umweltbelastungen stellt eine zentrale Herausforderung für die globale Nachhaltigkeit dar. In diesem Rahmen versucht diese Arbeit, die Potentiale der globalen Landwirtschaft auf kleinräumiger Skala auszuloten. Hierbei werden Prognosen zu Auswirkungen von Ernährungsmustern und Veränderungen der landwirtschaftlichen Produktionsmethoden unter Beibehaltung der der Anbaufolge und deren Einfluss auf den Klimawandel berücksichtigt. Projektionen basierend auf räumlich hoch aufgelösten Daten lassen Aussagen darüber zu, inwieweit die Nahrungsmittelproduktion lokal sichergestellt werden kann und falls nicht, wie dies durch regionalen und/oder globalen Handel erfolgen kann. Frei verfügbare Datensätze und Ansätze, wie künstliche neuronale Netze, Szenarioanalysen, Downscaling und skalenübergreifende Methoden werden zur Bearbeitung genutzt. Für den Zeitraum von 1961 bis 2007 konnten 16 globale Ernährungstypologien identifiziert werden. Diese spiegeln vor allem eine Tendenz hin zu fleischhaltiger Kost wider. Durch den hohen Anteil tierischer Produkte verursachen kalorienreiche Ernährungsmuster, wie in Industrieländern üblich, hohe pro Kopf Emissionen von 3,7-6,1 kg CO2eq./Tag und übersteigen die pro Kopf Emissionen von 1,4-4,5 kg CO2eq./Tag einer kalorienarmen Ernährungsweise in Entwicklungsländern. Weltweit werden 40% aller landwirtschaftlichen Erzeugnisse als Futtermittel genutzt, was bedeutet, dass aus einem regional variierenden Wert von weniger als 1 kcal bis 10 kcal Getreide, 1 kcal tierische Produkte erzeugt werden. Im Jahr 2000 konnten lokale und nationale Nahrungsmittelproduktionen die Nachfrage von 1,9 bzw. 4,4 Milliarden Menschen erfüllen. Trotzdem sind ca. 1 Milliarde Menschen in Asien und Afrika auf interkontinentalen Handel angewiesen um ihre Lebensmittelnachfrage zu decken. Bei alleiniger Betrachtung des Bevölkerungswachstums wird ein Anstieg der globalen landwirtschaftlichen Treibhausgasemissionen bis zum Jahr 2050 auf jährlich 7 Gt CO2eq. deutlich, während die Nachfrage nach angebauten Futtermitteln gegenüber 2000 annähernd gleich bleiben wird. Das Hinzuziehen von Ernährungsgewohnheiten zeigt, dass zwischen 2000 und 2050 ein Anstieg der Treibhausgasemissionen auf 20 Gt CO2eq. pro Jahr und eine 1,3-fach gesteigerte Nachfrage nach Futtermittel möglich ist. Der zusätzliche Einbezug von technologischem Fortschritt ergibt, dass Emissionen auf jährlich 14 Gt CO2eq. und der Anstieg der Futtermittelnachfrage auf das 0,8-fache reduziert werden können. Daraus geht die Erkenntnis hervor, dass je nachdem, wie erfolgreich Ertragslücken geschlossen werden, 1,5 bis 6 Milliarden Menschen vom internationalen Handel abhängig sind, welcher mittelfristig zusätzliche fossile Energie benötigt. Der Einfluss des Klimawandels auf Ernteerträge wird den Bedarf an internationalem Handel mit landwirtschaftlichen Produkten um 4% bis 16% erhöhen. Weiterhin lässt sich schlussfolgern, dass insbesondere veränderte Ernährungsgewohnheiten, im Gegensatz zu Bevölkerungswachstum, die Nachfrage nach Getreide, die landwirtschaftlichen Treibhausgasemissionen sowie den internationalen Handel mit Nahrungsmitteln erhöhen werden. Durch adäquaten Technologietransfer und technologischen Fortschritt lassen sich Ernteerträge steigern, landwirtschaftliche Emissionen senken und die Effizienz der Umwandlung von Futtermittel in tierische Produkte erhöhen. Abhängigkeiten vom internationalen Handel könnten durch den Konsum lokaler und regionaler Produkte und durch Diversifizierung von Erzeugnissen verringert werden. Zur Schließung von Ertragslücken sind ortsspezifische Maßnahmen erforderlich, wie die nachhaltige Verwendung von Düngemitteln und Pestiziden, Bodenverbesserung, Maßnahmen zur Abschwächung klimabedingter Ernteschwankungen sowie ein verbesserter Marktzugang. Um die Ernährung einer wachsenden Weltbevölkerung zu gewährleisten, ist eine Kombination aus nachhaltiger Intensivierung und Ausweitung der Landwirtschaft, des Handels sowie Ernährungsmuster mit geringeren Anteilen tierischer Produkte notwendig. KW - food security KW - global change KW - climate change KW - yield gap KW - dietary patterns KW - livestock feed KW - food self-sufficiency KW - emissions KW - food demand KW - dietary changes KW - self-organising maps KW - cross-scale analysis KW - sustainability KW - Nahrungsmittelsicherheit KW - Nahrungsmittelselbstversorgung KW - Ertragslücken KW - Emissionen KW - Futtermittel KW - Ernährungsmuster KW - Ernährungsumstellung KW - Klimawandel KW - Lebensmittelnachfrage KW - selbstorganisierte Karten KW - skalenübergreifende Analyse KW - Nachhaltigkeit Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-77849 ER - TY - THES A1 - Wattenbach, Martin T1 - The hydrological effects of changes in forest area and species composition in the federal state of Brandenburg, Germany T1 - Die hydrologischen Effekte von Veränderungen der Waldfläche und Artenzusammensetzung im Land Brandenburg, Deutschland N2 - This thesis aims to quantify the human impact on the natural resource water at the landscape scale. The drivers in the federal state of Brandenburg (Germany), the area under investigation, are land-use changes induced by policy decisions at European and federal state level. The water resources of the federal state are particularly sensitive to changes in land-use due to low precipitation rates in the summer combined with sandy soils and high evapotranspiration rates. Key elements in landscape hydrology are forests because of their unique capacity to transport water from the soil to the atmosphere. Given these circumstances, decisions made at any level of administration that may have effects on the forest sector in the state are critical in relation to the water cycle. It is therefore essential to evaluate any decision that may change forest area and structure in such a sensitive region. Thus, as a first step, it was necessary to develop and implement a model able to simulate possible interactions and feedbacks between forested surfaces and the hydrological cycle at the landscape scale. The result is a model for simulating the hydrological properties of forest stands based on a robust computation of the temporal and spatial LAI (leaf area index) dynamics. The approach allows the simulation of all relevant hydrological processes with a low parameter demand. It includes the interception of precipitation and transpiration of forest stands with and without groundwater in the rooting zone. The model also considers phenology, biomass allocation, as well as mortality and simple management practices. It has been implemented as a module in the eco-hydrological model SWIM (Soil and Water Integrated Model). This model has been tested in two pre-studies to verify the applicability of its hydrological process description for the hydrological conditions typical for the state. The newly implemented forest module has been tested for Scots Pine (Pinus sylvestris) and in parts for Common Oak (Quercus robur and Q. petraea) in Brandenburg. For Scots Pine the results demonstrate a good simulation of annual biomass increase and LAI in addition to the satisfactory simulation of litter production. A comparison of the simulated and measured data of the May sprout for Scots pine and leaf unfolding for Oak, as well as the evaluation against daily transpiration measurements for Scots Pine, does support the applicability of the approach. The interception of precipitation has also been simulated and compared with weekly observed data for a Scots Pine stand which displays satisfactory results in both the vegetation periods and annual sums. After the development and testing phase, the model is used to analyse the effects of two scenarios. The first scenario is an increase in forest area on abandoned agricultural land that is triggered by a decrease in European agricultural production support. The second one is a shift in species composition from predominant Scots Pine to Common Oak that is based on decisions of the regional forestry authority to support a more natural species composition. The scenario effects are modelled for the federal state of Brandenburg on a 50m grid utilising spatially explicit land-use patterns. The results, for the first scenario, suggest a negative impact of an increase in forest area (9.4% total state area) on the regional water balance, causing an increase in mean long-term annual evapotranspiration of 3.7% at 100% afforestation when compared to no afforestation. The relatively small annual change conceals a much more pronounced seasonal effect of a mean long-term evapotranspiration increase by 25.1% in the spring causing a pronounced reduction in groundwater recharge and runoff. The reduction causes a lag effect that aggravates the scarcity of water resources in the summer. In contrast, in the second scenario, a change in species composition in existing forests (29.2% total state area) from predominantly Scots Pine to Common Oak decreases the long-term annual mean evapotranspiration by 3.4%, accompanied by a much weaker, but apparent, seasonal pattern. Both scenarios exhibit a high spatial heterogeneity because of the distinct natural conditions in the different regions of the state. Areas with groundwater levels near the surface are particularly sensitive to changes in forest area and regions with relatively high proportion of forest respond strongly to the change in species composition. In both cases this regional response is masked by a smaller linear mean effect for the total state area. Two critical sources of uncertainty in the model results have been investigated. The first one originates from the model calibration parameters estimated in the pre-study for lowland regions, such as the federal state. The combined effect of the parameters, when changed within their physical meaningful limits, unveils an overestimation of the mean water balance by 1.6%. However, the distribution has a wide spread with 14.7% for the 90th percentile and -9.9% for the 10th percentile. The second source of uncertainty emerges from the parameterisation of the forest module. The analysis exhibits a standard deviation of 0.6 % over a ten year period in the mean of the simulated evapotranspiration as a result of variance in the key forest parameters. The analysis suggests that the combined uncertainty in the model results is dominated by the uncertainties of calibration parameters. Therefore, the effect of the first scenario might be underestimated because the calculated increase in evapotranspiration is too small. This may lead to an overestimation of the water balance towards runoff and groundwater recharge. The opposite can be assumed for the second scenario in which the decrease in evapotranspiration might be overestimated. N2 - Das übergreifende Ziel der vorliegenden Arbeit ist es, die Interaktion zwischen Landnutzungsänderung und dem Landschaftswasserhaushalt zu quantifizieren. Das Untersuchungsgebiet für die Analyse ist das Land Brandenburg. Bedingt durch seine Kombination geringer Sommerniederschläge mit der Dominanz sandiger Böden und hoher Verdunstungsraten, insbesondere von den großflächigen Wäldern und Forsten, ist es besonders empfindlich gegenüber Landnutzungsänderung. Waldflächen sind Schlüsselelemente im Landschaftswasserhaushalt, da sie den Bodenwasserspeicher effizienter mit der Atmosphäre koppeln als die meisten anderen Vegetationsformen. Im ersten Teil der Arbeit war es daher notwendig, ein geeignetes Modellkonzept zu finden. Der Ansatz sollte in der Lage sein, die hydrologischen Effekte auf Landschaftsebene zu modellieren, ohne dabei die Datenverfügbarkeit in diesem Anwendungsbereich zu überschreiten. Das entwickelte Modellkonzept wurde in das ökohydrologische Einzugsgebietsmodell SWIM (Soil Water Integrated Model) integriert. Nach einer Test- und Entwicklungsphase konnte das Modell für die integrierte Analyse der Wirkung von zwei Szenarien auf den Landeswasserhaushalt verwendet werden. Das erste Szenario beschäftigt sich mit der möglichen Zunahme der Waldfläche als Folge der Neuausrichtung der Agrarsubventionspolitik der Europäischen Union. Die Waldflächenzunahme führt zu einer Steigerung der Evapotranspiration im langjährigen Mittel. Das zweite Szenario behandelt die Auswirkung des Brandenburger Waldumbauprogramms und hat eine vergleichsweise geringe Abnahme der langjährigen mittleren Verdunstung zur Folge. Der lineare mittlere Verlauf überdeckt ein ausgeprägtes räumliches und saisonales Muster der Veränderung. Die Zonen starker Effekte der beider Szenarien überlappen sich nur in einigen Fällen, so ist es möglich, dass die positiven Wirkungen des Waldumbauprogramms in einigen Regionen durch eine mögliche Ausweitung der Waldfläche aufgehoben werden. Die vorgestellten Ergebnisse zeigen deutlich, dass Landnutzungsänderungen, die durch politische oder administrative Entscheidungen ausgelöst werden, Auswirkungen auf elementare Landschaftsfunktionen wie den Wasserhaushalt haben. Es wird deutlich, dass ein integrativer Modellierungsansatz, der die wahrscheinlichen Wirkungen administrativer Entscheidungen in Betracht zieht, Grundlagen für eine nachhaltige Entwicklung liefern kann. Diese Ergebnisse werden umso relevanter, je stärker die betroffene Ressource bereits eingeschränkt ist. In Bezug auf die Wasserressourcen im Land Brandenburg ist das der Fall und aktuelle Studien zum Globalen Wandel in der Region prognostizieren eine Verschärfung dieser Situation. KW - Pinus sylvestris KW - Quercus KW - SWIM KW - Grundwasser KW - Globaler Wandel KW - global change KW - CAP KW - water balance KW - ground water KW - forestry Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-27394 ER - TY - THES A1 - Schröder, Birgit Eva T1 - Spatial and temporal dynamics of the terrestrial carbon cycle : assimilation of two decades of optical satellite data into a process-based global vegetation model T1 - Räumliche und zeitliche Dynamik des terrestrischen Kohlenstoffhaushaltes anhand der Assimilation von 20 Jahren optischer Satellitendaten in ein prozessbasiertes dynamisches globales Vegetationsmodell (DGVM) N2 - This PhD thesis presents the spatio-temporal distribution of terrestrial carbon fluxes for the time period of 1982 to 2002 simulated by a combination of the process-based dynamic global vegetation model LPJ and a 21-year time series of global AVHRR-fPAR data (fPAR – fraction of photosynthetically active radiation). Assimilation of the satellite data into the model allows improved simulations of carbon fluxes on global as well as on regional scales. As it is based on observed data and includes agricultural regions, the model combined with satellite data produces more realistic carbon fluxes of net primary production (NPP), soil respiration, carbon released by fire and the net land-atmosphere flux than the potential vegetation model. It also produces a good fit to the interannual variability of the CO2 growth rate. Compared to the original model, the model with satellite data constraint produces generally smaller carbon fluxes than the purely climate-based stand-alone simulation of potential natural vegetation, now comparing better to literature estimates. The lower net fluxes are a result of a combination of several effects: reduction in vegetation cover, consideration of human influence and agricultural areas, an improved seasonality, changes in vegetation distribution and species composition. This study presents a way to assess terrestrial carbon fluxes and elucidates the processes contributing to interannual variability of the terrestrial carbon exchange. Process-based terrestrial modelling and satellite-observed vegetation data are successfully combined to improve estimates of vegetation carbon fluxes and stocks. As net ecosystem exchange is the most interesting and most sensitive factor in carbon cycle modelling and highly uncertain, the presented results complementary contribute to the current knowledge, supporting the understanding of the terrestrial carbon budget. N2 - In der vorliegenden Arbeit wird anhand der Kombination eines dynamischen globalen Vegetationsmodells mit einer Zeitreihe von 21 Jahren optischer Satellitendaten eine realistische Abschätzung der terrestrischen Quellen und Senken von CO2 ermöglicht. Grundlage des hier vorgestellten neuen Modells stellt das dynamische globale Vegetationsmodell LPJ dar, ein prozessorientiertes Vegetationsmodell, das basierend auf ökophysiologischen Grundlagen die Vegetationsverteilung und -dynamik, Störungen (z.B. Feuer) und den Kohlenstoff- sowie den Wasserkreislauf modelliert. Die Kopplung des LPJ-DGVM erfolgte mit einer Zeitreihe globaler AVHRR-fPAR Daten (fPAR – Anteil photosynthetisch aktiver Strahlung), für den Zeitraum 1982 bis 2002 in einer räumlichen Auflösung von 0.5°. Als Ergebnis liegt nun eine globale raum-zeitliche Verteilung aller relevanten Kohlenstoffflüsse vor: Nettoprimärproduktion, Bodenrespiration, Nettoökosystemproduktion, durch Feuer und Ernte emittierter Kohlenstoff, sowie der in Biomasse und Boden gespeicherte Kohlenstoff. Verglichen mit dem Originalmodell haben sich durch die Einspeisung der Satellitendaten alle relevanten Kohlenstoffkomponenten verringert und zeigen nun bessere Übereinstimmung mit Literaturwerten. Die geringeren Kohlenstoffflüsse resultieren aus einer Kombination verschiedener Effekte: geringere Vegetationsbedeckung, Berücksichtigung der landwirtschaftlichen Nutzfläche, realistischere Abbildung der Saisonalität, Veränderung der Vegetationsverteilung und Verschiebung der Artenzusammensetzung. Die globalen Kohlenstoffflüsse werden mit dem vorgestellten Modell realistischer abgebildet als mit Ansätzen, die nur die potentiell natürliche Vegetation simulieren. Insbesondere die Quellen- und Senkendynamik unterliegt vielfältigen Prozessen, die mit einem Modell, dass auch die Bodenrespiration prozessorientiert berücksichtigt, verlässlich geschätzt wird. KW - Vegetationsmodell KW - Kohlenstoffmodell KW - DGVM KW - LPJ KW - Kohlenstoffhaushalt KW - vegetation model KW - carbon cycle KW - DGVM KW - LPJ KW - global change Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17596 ER - TY - THES A1 - Zaehle, Sönke T1 - Process-based simulation of the terrestrial biosphere : an evaluation of present-day and future terrestrial carbon balance estimates and their uncertainty T1 - Prozessbasierte Modellierung der terrestrischen Biosphäre : eine Auswertung heutiger und zukünftiger terrestrischer Kohlenstoffbilanzabschätzungen und ihrer Unsicherheit N2 - At present, carbon sequestration in terrestrial ecosystems slows the growth rate of atmospheric CO2 concentrations, and thereby reduces the impact of anthropogenic fossil fuel emissions on the climate system. Changes in climate and land use affect terrestrial biosphere structure and functioning at present, and will likely impact on the terrestrial carbon balance during the coming decades - potentially providing a positive feedback to the climate system due to soil carbon releases under a warmer climate. Quantifying changes, and the associated uncertainties, in regional terrestrial carbon budgets resulting from these effects is relevant for the scientific understanding of the Earth system and for long-term climate mitigation strategies. A model describing the relevant processes that govern the terrestrial carbon cycle is a necessary tool to project regional carbon budgets into the future. This study (1) provides an extensive evaluation of the parameter-based uncertainty in model results of a leading terrestrial biosphere model, the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM), against a range of observations and under climate change, thereby complementing existing studies on other aspects of model uncertainty; (2) evaluates different hypotheses to explain the age-related decline in forest growth, both from theoretical and experimental evidence, and introduces the most promising hypothesis into the model; (3) demonstrates how forest statistics can be successfully integrated with process-based modelling to provide long-term constraints on regional-scale forest carbon budget estimates for a European forest case-study; and (4) elucidates the combined effects of land-use and climate changes on the present-day and future terrestrial carbon balance over Europe for four illustrative scenarios - implemented by four general circulation models - using a comprehensive description of different land-use types within the framework of LPJ-DGVM. This study presents a way to assess and reduce uncertainty in process-based terrestrial carbon estimates on a regional scale. The results of this study demonstrate that simulated present-day land-atmosphere carbon fluxes are relatively well constrained, despite considerable uncertainty in modelled net primary production. Process-based terrestrial modelling and forest statistics are successfully combined to improve model-based estimates of vegetation carbon stocks and their change over time. Application of the advanced model for 77 European provinces shows that model-based estimates of biomass development with stand age compare favourably with forest inventory-based estimates for different tree species. Driven by historic changes in climate, atmospheric CO2 concentration, forest area and wood demand between 1948 and 2000, the model predicts European-scale, present-day age structure of forests, ratio of biomass removals to increment, and vegetation carbon sequestration rates that are consistent with inventory-based estimates. Alternative scenarios of climate and land-use change in the 21st century suggest carbon sequestration in the European terrestrial biosphere during the coming decades will likely be on magnitudes relevant to climate mitigation strategies. However, the uptake rates are small in comparison to the European emissions from fossil fuel combustion, and will likely decline towards the end of the century. Uncertainty in climate change projections is a key driver for uncertainty in simulated land-atmosphere carbon fluxes and needs to be accounted for in mitigation studies of the terrestrial biosphere. N2 - Kohlenstoffspeicherung in terrestrischen Ökosystemen reduziert derzeit die Wirkung anthropogener CO2-Emissionen auf das Klimasystem, indem sie die Wachstumsrate der atmosphärischer CO2-Konzentration verlangsamt. Die heutige terrestrische Kohlenstoffbilanz wird wesentlich von Klima- und Landnutzungsänderungen beeinflusst. Diese Einflussfaktoren werden sich auch in den kommenden Dekaden auf die terrestrische Biosphäre auswirken, und dabei möglicherweise zu einer positiven Rückkopplung zwischen Biosphäre und Klimasystem aufgrund von starken Bodenkohlenstoffverlusten in einem wärmeren Klima führen. Quantitative Abschätzungen der Wirkung dieser Einflussfaktoren - sowie der mit ihnen verbundenen Unsicherheit - auf die terrestrische Kohlenstoffbilanz sind daher sowohl für das Verständnis des Erdsystems, als auch für eine langfristig angelegte Klimaschutzpolitik relevant. Um regionale Kohlenstoffbilanzen in die Zukunft zu projizieren, sind Modelle erforderlich, die die wesentlichen Prozesse des terrestrischen Kohlenstoffkreislaufes beschreiben. Die vorliegende Arbeit (1) analysiert die parameterbasierte Unsicherheit in Modellergebnissen eines der führenden globalen terrestrischen Ökosystemmodelle (LPJ-DGVM) im Vergleich mit unterschiedlichen ökosystemaren Messgrößen, sowie unter Klimawandelprojektionen, und erweitert damit bereits vorliegende Studien zu anderen Aspekten der Modelunsicherheit; (2) diskutiert unter theoretischen und experimentellen Aspekten verschiedene Hypothesen über die altersbedingte Abnahme des Waldwachstums, und implementiert die vielversprechenste Hypothese in das Model; (3) zeigt für eine europäische Fallstudie, wie Waldbestandsstatistiken erfolgreich für eine verbesserte Abschätzung von regionalen Kohlenstoffbilanzen in Wäldern durch prozessbasierten Modelle angewandt werden können; (4) untersucht die Auswirkung möglicher zukünftiger Klima- und Landnutzungsänderungen auf die europäische Kohlenstoffbilanz anhand von vier verschiedenen illustrativen Szenarien, jeweils unter Berücksichtigung von Klimawandelprojektionen vier verschiedener Klimamodelle. Eine erweiterte Version von LPJ-DGVM findet hierfür Anwendung, die eine umfassende Beschreibung der Hauptlandnutzungstypen beinhaltet. Die vorliegende Arbeit stellt einen Ansatz vor, um Unsicherheiten in der prozessbasierten Abschätzung von terrestrischen Kohlenstoffbilanzen auf regionaler Skala zu untersuchen und zu reduzieren. Die Ergebnisse dieser Arbeit zeigen, dass der Nettokohlenstoffaustausch zwischen terrestrischer Biosphäre und Atmosphäre unter heutigen klimatischen Bedingungen relativ sicher abgeschätzt werden kann, obwohl erhebliche Unsicherheit über die modelbasierte terrestrische Nettoprimärproduktion existiert. Prozessbasierte Modellierung und Waldbestandsstatistiken wurden erfolgreich kombiniert, um verbesserte Abschätzungen von regionalen Kohlenstoffvorräten und ihrer Änderung mit der Zeit zu ermöglichen. Die Anwendung des angepassten Modells in 77 europäischen Regionen zeigt, dass modellbasierte Abschätzungen des Biomasseaufwuchses in Wäldern weitgehend mit inventarbasierten Abschätzungen für verschiede Baumarten übereinstimmen. Unter Berücksichtigung von historischen Änderungen in Klima, atmosphärischem CO2-Gehalt, Waldfläche und Holzernte (1948-2000) reproduziert das Model auf europäischer Ebene die heutigen, auf Bestandsstatistiken beruhenden, Abschätzungen von Waldaltersstruktur, das Verhältnis von Zuwachs und Entnahme von Biomasse, sowie die Speicherungsraten im Kohlenstoffspeicher der Vegetation. Alternative Szenarien von zukünftigen Landnutzungs- und Klimaänderungen legen nahe, dass die Kohlenstoffaufnahme der europäischen terrestrischen Biosphäre von relevanter Größenordnung für Klimaschutzstrategien sind. Die Speicherungsraten sind jedoch klein im Vergleich zu den absoluten europäischen CO2-Emissionen, und nehmen zudem sehr wahrscheinlich gegen Ende des 21. Jahrhunderts ab. Unsicherheiten in Klimaprojektionen sind eine Hauptursache für die Unsicherheiten in den modellbasierten Abschätzungen des zukünftigen Nettokohlenstoffaustausches und müssen daher in Klimaschutzanalysen der terrestrischen Biosphäre berücksichtigt werden. KW - Terrestrische Ökologie KW - Kohlenstoffkreislauf KW - Modellierung KW - Landnutzung KW - Anthropogene Klimaänderung KW - dynamic global vegetation model KW - terrestrial carbon balance KW - forest age-structure KW - model uncertainty KW - global change Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5263 ER -