TY - JOUR A1 - Nomosatryo, Sulung A1 - Tjallingii, Rik A1 - Henny, Cynthia A1 - Ridwansyah, Iwan A1 - Wagner, Dirk A1 - Tomás, Sara A1 - Kallmeyer, Jens T1 - Surface sediment composition and depositional environments in tropical Lake Sentani, Papua Province, Indonesia JF - Journal of Paleolimnology N2 - Tropical Lake Sentani in the Indonesian Province Papua consists of four separate basins and is surrounded by a catchment with a very diverse geology. We characterized the surface sediment (upper 5 cm) of the lake's four sub-basins based on multivariate statistical analyses (principal component analysis, hierarchical clustering) of major element compositions obtained by X-ray fluorescence scanning. Three types of sediment are identified based on distinct compositional differences between rivers, shallow/proximal and deep/distal lake sediments. The different sediment types are mainly characterized by the correlation of elements associated with redox processes (S, Mn, Fe), carbonates (Ca), and detrital input (Ti, Al, Si, K) derived by river discharge. The relatively coarse-grained river sediments mainly derive form the mafic catchment geology and contribution of the limestone catchment geology is only limited. Correlation of redox sensitive and detrital elements are used to reveal oxidation conditions, and indicate oxic conditions in river samples and reducing conditions for lake sediments. Organic carbon (TOC) generally correlates with redox sensitive elements, although a correlation between TOC and individual elements change strongly between the three sediment types. Pyrite is the quantitatively dominant reduced sulfur mineral, monosulfides only reach appreciable concentrations in samples from rivers draining mafic and ultramafic catchments. Our study shows large spatial heterogeneity within the lake's sub-basins that is mainly caused by catchment geology and topography, river runoff as well as the bathymetry and the depth of the oxycline. We show that knowledge about lateral heterogeneity is crucial for understanding the geochemical and sedimentological variations recorded by these sediments. The highly variable conditions make Lake Sentani a natural laboratory, with its different sub-basins representing different depositional environments under identical tropical climate conditions. KW - Tropical lake KW - Lacustrine sediment KW - XRF analysis KW - Multivariate KW - statistics Y1 - 2022 U6 - https://doi.org/10.1007/s10933-022-00259-4 SN - 0921-2728 SN - 1573-0417 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Sebag, David A1 - Garcin, Yannick A1 - Adatte, Thierry A1 - Deschamps, Pierre A1 - Menot, Guillemette A1 - Verrecchia, Eric P. T1 - Correction for the siderite effect on Rock-Eval parameters BT - Application to the sediments of Lake Barombi (southwest Cameroon) JF - Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry N2 - Originally developed for use in the petroleum industry, Rock-Eval pyrolysis is a technique commonly applied to lake sediments to infer paleoenvironmental reconstructions. The standard Rock-Eval parameters provide information on the amount of total organic and inorganic carbon (TOC and MinC, respectively), and are usually interpreted as proxies for the source (aquatic or terrestrial) of the primary production of organic matter (Hydrogen Index vs Oxygen Index). Although this method usually provides valuable evidence, the common presence of siderite in tropical lake sediments can alter the primary signal of the sedimentary organic matter (SOM). Indeed, the CO2 and CO released by the pyrolysis of siderite are integral to the calculation of the SOM-related standard Rock-Eval parameters. In this study, we analyze sediments from a core collected in the Lake Barombi (southwest Cameroon) and describe the impact of siderite on standard Rock-Eval parameters. We propose a workflow that allows standard Rock-Eval parameters to be corrected, based on the analysis of thermograms. The proposed corrections provide siderite-effect-free parameters, accurately reflecting the changes in sedimentary organic matter composition. (C) 2018 Elsevier Ltd. All rights reserved. KW - Organic geochemistry KW - Rock-Eval pyrolysis KW - Van Krevelen diagram KW - Siderite KW - Tropical lake KW - Western Central Africa Y1 - 2018 U6 - https://doi.org/10.1016/j.orggeochem.2018.05.010 SN - 0146-6380 VL - 123 SP - 126 EP - 135 PB - Elsevier CY - Oxford ER -