TY - THES A1 - Czarnecki, Maciej T1 - Untersuchungen zur Synthese von (1,7)-Naphthalenophanen über eine Dehydro-DIELS-ALDER-Reaktion als Schlüsselschritt T1 - Investigations towards the synthesis of (1,7)-Naphthalenophanes via a Dehydro-DIELS-ALDER reaction as key step BT - synthetisch-technische Aspekte, Eigenschaften und Anwendungen BT - synthetic-technical aspects, properties and applications N2 - Die vorliegende Dissertation behandelt drei thematische Schwerpunkte. Im Ergebnisteil steht die chemische Synthese von sogenannten (1,7)-Naphthalenophanen im Vordergrund, die zur Substanzklasse von Cyclophanen gehören. Während zahlreiche Synthesemethoden Strategien zum Aufbau von Ringsystemen (wie z. B. von Naphthalenophanen) verfolgen, die Teil einer bereits existierenden aromatischen Struktur der Ausgangsverbindung sind, nutzen nur wenige Ansätze Reaktionen, die einen Ringschluss zum gewünschten Produkt erst im Zuge der Synthese etablieren. Eine Benzanellierung, die eine besondere Aufmerksamkeit im Arbeitskreis erfahren hat, ist die Dehydro-DIELS-ALDER-Reaktion (DDA-Reaktion). Im Rahmen dieser Arbeit konnte gezeigt werden, dass zwölf ausgewählte (1,7)-Naphthalenophane, die teilweise ringgespannt und makrozyklisch aufgebaut waren, mithilfe einer photochemischen Variante der DDA-Reaktion (PDDA-Reaktion) zugänglich gemacht werden können. Die Versuche, auf thermischem Wege (TDDA-Reaktion) (1,7)-Naphthalenophane herzustellen, misslangen. Die außergewöhnliche Reaktivität der Photoreaktanten konnte mithilfe quantenchemischer Berechnungen durch eine gefaltete Grundzustandsgeometrie erklärt werden. Darüber hinaus wurden Ringspannungen und strukturelle Spannungsindikatoren der relevanten Photoprodukte ermittelt und Trends in Abhängigkeit der Linkerlänge in den NMR-Spektren der Zielverbindungen ermittelt sowie diskutiert. Zudem zeigte eine Variation am Chromophor (Acyl-, Carbonsäure- und Carbonsäureester) der Photoreaktanten bei der Bestrahlung in Dichlormethan eine vergleichbare Photokinetik und -reaktivität. Der zweite Abschnitt dieser Dissertation ist dem Design und der Entwicklung zweier Photoreaktoren für UV-Anwendungen im kontinuierlichen Durchfluss gewidmet, da photochemische Transformationen bekanntermaßen in ihrer Skalierbarkeit limitiert sind. Im ersten Prototyp konnten mittels effizienter Parallelschaltung mit bis zu drei UV-Lampen (𝜆𝜆 = 254, 310 und 355 nm) Produktmaterialmengen von bis zu n = 188 mmol anhand eines ausgewählten Fallbeispiels erreicht werden. Im konstruktionstechnisch stark vereinfachten zweiten Photoreaktor wurden alle quarzhaltigen Elemente gegen günstigeres PLEXIGLAS® ersetzt. Das Resultat waren identische Raum-Zeit-Ausbeuten in Bezug auf das zuvor gewählte Synthesebeispiel. Demnach bietet die UV-Photochemie im kontinuierlichen Durchfluss Vorteile gegenüber der traditionellen Bestrahlung im Tauchreaktor. Hinsichtlich Reaktionszeit, Produktausbeuten und Lösemittelverbrauch ist sie synthetisch weit überlegen. Im letzten Abschnitt der Arbeit wurden diese Erkenntnisse genutzt, um biomedizinisch und pharmakologisch vielversprechende 1-Arylnaphthalen-Lignane mittels einer intramolekularen PDDA-Reaktion (IMPDDA-Reaktion) als Schlüsselschritt herzustellen. Hierzu wurden drei Konzepte erarbeitet und in der Totalsynthese von drei ausgewählten Zielstrukturen auf Basis des 1-Arylnaphthalengrundgerüsts realisiert. N2 - The content of this doctoral thesis focusses on three major thematic aspects. The first half of this work is devoted to the chemical synthesis of so-called (1,7)-naphthalenophanes, which are classified in the group of cyclophanes. Several synthetic methods consist of strategies, which are often part of an already existing aromatic unit (e.g. as in naphthalenophanes). Basic approaches where the aromatic moiety is formed during the reaction in terms of a ring-closing reaction can be rarely found. A powerful benzoanellation method which has proven suitability in the working group is the Dehydro-DIELS-ALDER reaction (DDA reaction). As part of this work twelve selected examples of partially strained and macrocyclic (1,7)-naphthalenophanes could be obtained via a photochemical variant of the DDA reaction (PDDA reaction). In contrast the thermal version (TDDA reaction) for the preparation of (1,7)-naphthalenophanes failed. The extraordinary reactivity of photo reactants originated from a folded ground-state geometry is caused by π-stacking as calculated by quantum chemical methods. In addition, ring strains and structural strain indicators of relevant photo products were calculated as well. Besides that, trends inside the corresponding product NMR spectra in dependence of the linker length were identified and discussed. Moreover, a variation of the chromophoric group (acyl, carboxylic acid and carboxylic acid ester) in the photo reactants showed comparable photokinetics and -reactivities after being irradiated in dichloromethane. The second part dealt with the design and development of two continuous-flow reactors for applications in the UV-range, since photochemical transformations are limited by their scalability. The first prototype reactor could generate via an internal numbering-up approach consisting of three lamps (𝜆𝜆 = 254, 310 und 355 nm) product material with up to n = 188.0 mmol as a selected test system showed. The second flow UV-reactor was constructionally simplified by exchanging all quarz containing elements by PLEXIGLAS®. As a result, identical space-time-yields could be obtained with the same chosen test substrate. Continuous-flow UV-photochemistry can therefore be regarded as advantageous over traditional batch photochemistry regarding reaction times, product yields and solvent waste. As a result, the last section provided insights into the synthesis of biomedically and pharmacologically relevant 1-arylnaphthalene lignanes based on an intramolecular PDDA reaction (IMPDDA reaction) as key step. For this purpose, three synthesis concepts were elaborated and applied in the total synthesis of three selected natural products consisting of an 1-arylnaphthalene skeleton. KW - Photochemie KW - Durchflusschemie KW - 1-Arylnaphthalen-Lignane KW - photochemistry KW - flow chemistry KW - 1-arylnaphthalene lignanes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-508670 ER - TY - THES A1 - Arya, Pooja T1 - Light controlled active and passive motion of colloidal particles N2 - In this dissertation we introduce a concept of light driven active and passive manipulation of colloids trapped at solid/liquid interface. The motion is induced due to generation of light driven diffusioosmotic flow (LDDO) upon irradiation with light of appropriate wavelength. The origin of the flow is due to osmotic pressure gradient resulting from a concentration gradient at the solid/liquid interface of the photosensitive surfactant present in colloidal dispersion. The photosensitive surfactant consists of a cationic head group and a hydrophobic tail in which azobenzene group is integrated in. The azobenzene is known to undergo reversible photo-isomerization from a stable trans to a meta stable cis state under irradiation with UV light. Exposure to light of larger wavelength results in back photo-isomerization from cis to trans state. The two isomers have different molecular properties, for instance, trans isomer has a rod like structure and low polarity (0 dipole moment), whereas cis one is bent and has a dipole moment of ~3 Debye. Being integrated in the hydrophobic tail of the surfactant molecule, the azobenzene state determines the hydrophobicity of the whole molecule: in the trans state the surfactant is more hydrophobic than in the cis-state. In this way many properties of the surfactant such as the CMC, solubility and the interaction potential with a solid surface can be altered by light. When the solution containing such a surfactant is irradiated with focused light, a concentration gradient of different isomers is formed near the boundary of the irradiated area near the solid surface resulting in osmotic pressure gradient. The generated diffusioosmotic (DO) flow carries the particles passively along. The local-LDDO flow can be generated around and by each particle when mesoporous silica colloids are dispersed in the surfactant solution. This is because porous particles act as a sink/source which absorbs azobenzene molecule in trans state and expels it when it is in the cis state. The DO flows generated at each particle interact resulting in aggregation or separation depending upon the initial state of surfactant molecules. The kinetic of aggregation and separation can be controlled and manipulated by altering the parameters such as the wavelength and intensity of the applied light, as well as surfactant and particle concentration. Using two wavelengths simultaneously allows for dynamic gathering and separation creating fascinating patterns such as 2D disk of well separated particles or establishing collective complex behaviour of particle ensemble as described in this thesis. The mechanism of l-LDDO is also used to generate self-propelled motion. This is possible when half of the porous particle is covered by metal layer, basically blocking the pores on one side. The LDDO flow generated on uncapped side pushes the particle forward resulting in a super diffusive motion. The system of porous particle and azobenzene containing surfactant molecule can be utilized for various application such as drug delivery, cargo transportation, self-assembling, micro motors/ machines or micro patterning. N2 - In dieser Doktorarbeit führen wir das Konzept der lichtinduzierten Diffusioosmose (LDDO) zur licht-kontrollierten passiven und aktiven Bewegung von Kolloiden an der fest-flüssig Grenzfläche ein. Bei diesem neuartigen Phänomen wird ein Grenzflächenfluss mittels Lichtes bestimmter Wellenlänge erzeugt. Ein lichtempfindliches Tensid wirkt hierbei als Quelle der Diffusioosmose: Durch Einstrahlung von Licht wird ein Konzentrationsgradient an der Oberfläche erzeugt, der wiederum ein Ungleichgewicht im lateralen osmotischen Druck verursacht. Dieser Druckunterschied führt dann zu einem grenzflächennahen diffusioosmotischen Fluss. Das lichtaktive Molekül besteht aus einer kationischen Kopfgruppe und einer hydrophoben Kohlenstoffkette, in die die Azobenzolgruppe eingebettet ist. Azobenzol fungiert hier als Lichtschalter, da es mit Licht zwischen einem stabilen trans und einem metastabilen cis Zustand hin- und hergeschaltet werden kann. Nahes UV Licht führt hier zur trans-cis und sichtbares Licht zur cis-trans Isomerisation. Das trans Isomer unterscheidet sich in einigen Eigenschaften vom cis Isomer. So ist z.B. das trans-Isomer langgestreckt und besitzt eine geringe Polarität (verschwindendes Dipolmoment), währenddessen das cis Isomer gebogen ist und ein deutliches Dipolmoment von ca. 3 Debye besitzt. Durch die Integration der Azobenzolgruppe in die hydrophobe Kette des Tensids, bestimmt der Isomerisationszustand des Tensids die Hydrophobizität des gesamten Moleküls: Der trans Zustand ist deutlich hydrophober als der cis Zustand. Dieser Unterschied zeigt sich in den Löslichkeitseigenschaften des Moleküls, der kritischen Mizellenkonzentration sowie des Wechselwirkungspotentials zwischen Molekül und Grenzfläche. Dies kann genutzt werden, um diese Eigenschaften mittels Lichtbestrahlung zu ändern. Wird das Molekül in Wasser gelöst und mit fokussiertem Licht bestrahlt, kann ein isomerer Konzentrationsgradient im Bestrahlungsbereich an der fest-flüssig Grenzfläche erzeugt werden, der wiederum in einem osmotischen Druckgunterschied resultiert. Die daraus resultierende Diffusioosmose (DO), welche an der Grenzfläche erzeugt wird, ist in der Lage Kolloide, die sich an der Grenzfläche befinden, transportieren (passiv). Im Unterschied dazu kann ein sogenannter lokaler diffusioosmotischer Fluss (l-LDDO) um jedes einzelne Kolloid erzeugt werden, sobald es sich um meso-poröse Kolloide handelt. Hierbei agiert jedes Kolloid selbst als Konzentrationsquelle- bzw. –senke (ähnlich dem fokussiertem Licht im oberen Fall). Je nach Isomerisationszustand lagert sich das Molekül eher im Kolloid an oder bevorzugt die Umgebung des Wassers. Befindet sich das Molekül im trans Zustand lagert es sich im Kolloid an, während es im cis Zustand eher die Umgebung des Wassers sucht. Der diffusioosmotische Fluss wird um jedes einzelne Kolloid erzeugt, wodurch eine Wechselwirkung zwischen allen Kolloiden zustande kommt, die entweder anziehend oder abstoßend sein kann. Das hängt vom Isomerisationszustand der Tensidmoleküle vor der Bestrahlung ab. Durch die Änderung der folgenden Parameter kann die Bewegung der Kolloide kontrolliert werden: Lichtwellenlänge, Lichtintensität, Tensidkonzentration, Kolloidkonzentration. Durch die gleichzeitige Verwendung zweier verschiedener Lichtquellen (mit unterschiedlichen Wellenlängen), ist es möglich eine interessante Dynamik in der Anziehung und Abstoßung der Kolloide zu erzeugen, die faszinierende Kolloidformationen entstehen lassen wie sie in dieser Arbeit näher beschrieben werden. Das Phänomen der lokalen Diffusioosmose kann auch zu selbst-getriebener Bewegung führen, nämlich wenn eine Hälfte des Kolloids bedeckt wird (z.B. mit einer Metallschicht) und somit für Tensidmoleküle undurchlässig macht. Der diffusioosmotische Fluss, der auf der unbedeckten Seite des Kolloids erzeugt wird, bewegt das Kolloid in eine Richtung fort und führt so durch Überlagerung zur thermischen Bewegung zu super-diffusivem Verhalten. Das System, bestehend aus porösen Kolloiden und azobenzolhaltigem Tensidmolekül kann sinnführend genutzt werden, z.B. für folgende Anwendungen: gezieltem Medikamententransport, Mikrofrachttransport, Selbstassemblierung, Mikromotoren/-maschinen oder Mikrostrukturierung. T2 - Licht-kontrollierten passive und aktive Bewegung kolloidaler Partikel KW - Azobenzene containing surfactant KW - Photochemistry KW - Porous silica particles KW - Janus colloids KW - LDDO KW - diffusioosmotic flow KW - Hydrophobic and hydrophillic interactions KW - Kinetics of photoisomerization KW - Azobenzol enthaltendes Tensid KW - hydrophoben und hydrophile Wechselwirkungen KW - Janus-Kolloid KW - LDDO KW - Photochemie KW - poröse Siliciumdioxidpartikel KW - diffusioosmotischer Fluss KW - Isomerisierung Kinetik Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483880 ER - TY - THES A1 - Markushyna, Yevheniia T1 - Modern photoredox transformations applied to the needs of organic synthesis N2 - Abstract. Catalysis is one of the most effective tools for the highly efficient assembly of complex molecular structures. Nevertheless, it is mainly represented by transition metal-based catalysts and typically is an energy consuming process. Therefore, photocatalysis utilizing solar energy is one of the appealing approaches to overcome these problems. A great alternative to classic transition metal-based photocatalysts, carbon nitrides, a group of organic polymeric semiconductors, have already shown their efficiency in water splitting, CO2 reduction, and organic pollutants degradation. However, these materials have also a great potential for the use in functionalization of complex organic molecules for synthetic needs as it was shown in recent years. This work addresses the challenge to develop efficient system for heterogeneous organic photocatalysis, employing cheap and environmentally benign photocatalysts – carbon nitrides. Herein, fundamental properties of semiconductors are studied from the organic chemistry standpoint; the inherent properties of carbon nitrides, such as ability to accumulate electrons, are deeply investigated and their effect on the reaction outcome is established. Thus, understanding of the electron charging processes allowed for the synthesis of otherwise hardly-achieved diazetidines-1,3 by tetramerization of benzylamines. Furthermore, the high electron capacity of Potassium Poly(heptazine imide)s (K-PHI) made possible a multi-electron reduction of aromatic nitro compounds to bare or formylated anilines. Additionally, two deep eutectic solvents (DES) were designed as a sustainable reaction media and reducing reagent for this reaction. Eventually, the high oxidation ability of carbon nitride K-PHI is employed in a challenging reaction of halide anion oxidation (Cl―, Br―) to accomplish electrophilic substitution in aromatic ring. The possibility to utilize NaCl solution (seawater mimetic) for the chlorination of electron rich arenes was shown. Eventually, light itself is used as a tool in a chromoselective photocatalytic oxidation of aromatic thiols and thioacetatas to three different compounds, using UV, blue, and red LEDs. All in all, the work enhances understanding the mechanism of heterogeneous photocatalysis in synthetic organic reactions and therefore, is a step forward to the sustainable methods of synthesis in organic chemistry. N2 - Abstrakt. Die Katalyse ist eines der effektivsten Werkzeuge für den hocheffizienten Aufbau komplexer molekularer Strukturen. Dennoch wird sie hauptsächlich durch Katalysatoren auf der Basis von Übergangsmetallen repräsentiert und ist typischerweise ein energieaufwendiger Prozess. Daher ist die Photokatalyse unter Nutzung der Sonnenenergie einer der attraktiven Ansätze zur Überwindung dieser Probleme. Kohlenstoffnitride, eine Gruppe organischer polymerer Halbleiter, haben ihre Effizienz bei der Wasserspaltung, der CO2-Reduktion und dem Abbau organischer Schadstoffe bereits unter Beweis gestellt. Diese Materialien haben jedoch auch ein großes Potenzial für die Funktionalisierung komplexer organischer Moleküle für synthetische Zwecke, wie sich in den letzten Jahren gezeigt hat. Diese Arbeit befasst sich mit der Herausforderung, ein effizientes System für die heterogene organische Photokatalyse zu entwickeln, bei dem billige und umweltfreundliche Photokatalysatoren – Kohlenstoffnitride – zum Einsatz kommen. Dabei werden grundlegende Eigenschaften von Halbleitern aus organisch-chemischer Sicht untersucht; die inhärenten Eigenschaften von Kohlenstoffnitriden, wie die Fähigkeit zur Elektronenanreicherung, werden eingehend untersucht und ihr Einfluss auf das Reaktionsergebnis festgestellt. So ermöglichte das Verständnis der Elektronenladungsvorgänge die Synthese von sonst kaum erreichten Diazetidinen-1,3 durch Tetramerisierung von Benzylaminen. Darüber hinaus ermöglichte die hohe Elektronenkapazität von Kalium-Polyheptazinimid (K-PHI) eine Mehrelektronenreduktion von aromatischen Nitroverbindungen zu „nackten“ oder formylierten Anilinen. Zudem wird die hohe Oxidationsfähigkeit von Kohlenstoffnitrid, K-PHI, in einer herausfordernden Reaktion der Oxidation von Halogenidanionen genutzt, um eine elektrophile Substitution im aromatischen Ring zu erreichen. Schließlich wird das Licht selbst als Werkzeug in einer chromoselektiven photokatalytischen Oxidation von aromatischen Thiolen und Thioacetaten verwendet, um drei verschiedene Verbindungen unter Verwendung von UV-, blauen und roten LEDs zu syntetisieren. Alles in allem verbessert die Arbeit das Verständnis des Mechanismus der heterogenen Photokatalyse in synthetischen organischen Reaktionen und ist daher ein Schritt vorwärts zu nachhaltigen Synthesemethoden in der organischen Chemie. KW - photocatalysis KW - carbon nitride KW - organic chemistry KW - photoredox catalysis KW - Photochemie KW - Photokatalyse Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-477661 ER - TY - THES A1 - Kumru, Baris T1 - Utilization of graphitic carbon nitride in dispersed media T1 - Anwendung von graphitischem Kohlenstoffnitrid in dispergierten Medien N2 - Utilization of sunlight for energy harvesting has been foreseen as sustainable replacement for fossil fuels, which would also eliminate side effects arising from fossil fuel consumption such as drastic increase of CO2 in Earth atmosphere. Semiconductor materials can be implemented for energy harvesting, and design of ideal energy harvesting devices relies on effective semiconductor with low recombination rate, ease of processing, stability over long period, non-toxicity and synthesis from abundant sources. Aforementioned criteria have attracted broad interest for graphitic carbon nitride (g-CN) materials, metal-free semiconductor which can be synthesized from low cost and abundant precursors. Furthermore, physical properties such as band gap, surface area and absorption can be tuned. g-CN was investigated as heterogeneous catalyst, with diversified applications from water splitting to CO2 reduction and organic coupling reactions. However, low dispersibility of g-CN in water and organic solvents was an obstacle for future improvements. Tissue engineering aims to mimic natural tissues mechanically and biologically, so that synthetic materials can replace natural ones in future. Hydrogels are crosslinked networks with high water content, therefore are prime candidates for tissue engineering. However, the first requirement is synthesis of hydrogels with mechanical properties that are matching to natural tissues. Among different approaches for reinforcement, nanocomposite reinforcement is highly promising. This thesis aims to investigate aqueous and organic dispersions of g-CN materials. Aqueous g-CN dispersions were utilized for visible light induced hydrogel synthesis, where g-CN acts as reinforcer and photoinitiator. Varieties of methodologies were presented for enhancing g-CN dispersibility, from co-solvent method to prepolymer formation, and it was shown that hydrogels with diversified mechanical properties (from skin-like to cartilage-like) are accessible via g-CN utilization. One pot photografting method was introduced for functionalization of g-CN surface which provides functional groups towards enhanced dispersibility in aqueous and organic media. Grafting vinyl thiazole groups yields stable additive-free organodispersions of g-CN which are electrostatically stabilized with increased photophysical properties. Colloidal stability of organic systems provides transparent g-CN coatings and printing g-CN from commercial inkjet printers. Overall, application of g-CN in dispersed media is highly promising, and variety of materials can be accessible via utilization of g-CN and visible light with simple chemicals and synthetic conditions. g-CN in dispersed media will bridge emerging research areas from tissue engineering to energy harvesting in near future. N2 - Sonnenlicht kann fossile Brennstoffe in der Energieerzeugung ersetzen und ermöglicht neben der Nutzung einer nachhaltigen Ressource dabei auch die deutliche Reduktion der Umweltbelastung in der Energieerzeugung. Die Verfügbarkeit geeigneter Energiegewinnungstechnologien hängt entscheidend von der Verfügbarkeit geeigneter Superkondensatoren (SC) ab. Ideale SC sollten sich in diesem Zusammenhang durch eine geringe Rekombinationsrate, gute Verarbeitbarkeit, Langzeitstabilität, Ungiftigkeit und die Verfügbarkeit aus nachhaltigen Ressourcen auszeichnen. Graphitisches Kohlenstoffnitrid (graphitic carbon nitride – g-CN), ein metall-freier Halbleiter, der aus nachhaltigen und in großer Menge verfügbaren Ausgangsstoffen hergestellt werden kann, ist als Material für dieses Eigenschaftsprofil hervorragend geeignet. Darüber hinaus können die Eigenschaften dieses Materials (innere Oberfläche, Bandlücke, Lichtabsorption) eingestellt werden. Daraus ergibt sich ein großes Forschungsinteresse z.B. im Bereich heterogener Katalyse, wie in der Kohlenstoffdioxidreduktion, elektrolytischen Wasserspaltung und verschiedener organischer Kupplungsreaktionen. Unglücklicherweise ist die schlechte Dispergierbarkeit von g-CN in organischen Lösungsmitteln und Wasser ein wesentlicher Hinderungsgrund für die erfolgreiche Nutzbarmachung dieser hervorragenden Eigenschaften. Das Design von Materialien, die biologisches Gewebe in seinen mechanischen und biologischen Eigenschaften nachahmen und ersetzen können, ist das Ziel der Gewebekonstruktion (Tissue Engineering – TE). Hydrogele, also Netzwerke mit hohem Wassergehalt, gelten als die vielversprechendsten Materialen in diesem Forschungsfeld. Die Herstellung von Hydrogelen, die biologischem Gewebe in seinen mechanischen Eigenschaften ähnelt gilt allerdings als äußerst schwierig und erfordert die Stabilisierung der Netzwerke. Besonders der Einsatz von Nanoverbundstrukturen (nanocomposites) erscheint in diesem Zusammenhang vielversprechend. Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von g-CN in sowohl wässrigen, als auch organischen Dispersionen. Im Zuge dessen werden wässrige Dispersionen für die Synthese von Hydrogelen, bei der g-CN sowohl als Photoinitiator für die durch sichtbares Licht ausgelöste Vernetzung, als auch als Strukturverstärker fungiert. Zur Verbesserung der Dispergierbarkeit des g CN werden vielseitige Ansätze präsentiert, welche von der Verwendung von Co-Lösungsmitteln bis zur Präpolymerbildung reichen. Durch die aufgezeigten Ansätze können Hydrogele mit unterschiedlichen mechanischen Eigenschaften hergestellt werden (hautartig bis knorpelig). Darüber hinaus wird eine Ein-Topf Synthese für die Oberflächenfunktionalisierung vorgestellt, durch die die Dispergierbarkeit von g-CN in organischen und wässrigen Medien verbessert werden kann. Beispielsweise erlaubt die Oberflächenfunktionalisierung mit Vinylthiazol die Herstellung von kolloidal dispergiertem g-CN mit verbesserten photophysikalischen Eigenschaften ohne zusätzliche Additive und eröffnet damit die Möglichkeit transparenter g-CN Beschichtungen und ermöglicht die Druckbarkeit von g-CN aus handelsüblichen Tintenstrahldruckern. Die Anwendung von g-CN in dispergierten Medien ist vielversprechend, da eine große Zahl sehr vielfältiger Materialien durch die Kombination von g-CN mit sichtbarem Licht aus günstigen, nachhaltigen Ressourcen verfügbar ist. Daher ist zu erwarten, dass g-CN in dispergierten Medien verschiedene im Entstehen begriffene Forschungsfelder von TE bis zur Energiegewinnung überspannen wird. KW - polymer chemistry KW - Polymerchemie KW - photochemistry KW - Photochemie KW - colloid chemistry KW - kolloidchemie KW - hydrogels KW - Hydrogelen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427339 ER - TY - THES A1 - Pavashe, Prashant T1 - Synthesis and transformations of 2-thiocarbohydrates T1 - Synthese und Transformationen von 2-Thiokohlenhydraten BT - a practical approach for functionalization of thiosugars BT - ein Praktischer Zugang zur Funktionalisierung von Thiozuckern N2 - I. Ceric ammonium nitrate (CAN) mediated thiocyanate radical additions to glycals In this dissertation, a facile entry was developed for the synthesis of 2-thiocarbohydrates and their transformations. Initially, CAN mediated thiocyanation of carbohydrates was carried out to obtain the basic building blocks (2-thiocyanates) for the entire studies. Subsequently, 2-thiocyanates were reduced to the corresponding thiols using appropriate reagents and reaction conditions. The screening of substrates, stereochemical outcome and the reaction mechanism are discussed briefly (Scheme I). Scheme I. Synthesis of the 2-thiocyanates II and reductions to 2-thiols III & IV. An interesting mechanism was proposed for the reduction of 2-thiocyanates II to 2-thiols III via formation of a disulfide intermediate. The water soluble free thiols IV were obtained by cleaving the thiocyanate and benzyl groups in a single step. In the subsequent part of studies, the synthetic potential of the 2-thiols was successfully expanded by simple synthetic transformations. II. Transformations of the 2-thiocarbohydrates The 2-thiols were utilized for convenient transformations including sulfa-Michael additions, nucleophilic substitutions, oxidation to disulfides and functionalization at the anomeric position. The diverse functionalizations of the carbohydrates at the C-2 position by means of the sulfur linkage are the highlighting feature of these studies. Thus, it creates an opportunity to expand the utility of 2-thiocarbohydrates for biological studies. Reagents and conditions: a) I2, pyridine, THF, rt, 15 min; b) K2CO3, MeCN, rt, 1 h; c) MeI, K2CO3, DMF, 0 °C, 5 min; d) Ac2O, H2SO4 (1 drop), rt, 10 min; e) CAN, MeCN/H2O, NH4SCN, rt, 1 h; f) NaN3, ZnBr2, iPrOH/H2O, reflux, 15 h; g) NaOH (1 M), TBAI, benzene, rt, 2 h; h) ZnCl2, CHCl3, reflux, 3 h. Scheme II. Functionalization of 2-thiocarbohydrates. These transformations have enhanced the synthetic value of 2-thiocarbohydrates for the preparative scale. Worth to mention is the Lewis acid catalyzed replacement of the methoxy group by other nucleophiles and the synthesis of the (2→1) thiodisaccharides, which were obtained with complete β-selectivity. Additionally, for the first time, the carbohydrate linked thiotetrazole was synthesized by a (3 + 2) cycloaddition approach at the C-2 position. III. Synthesis of thiodisaccharides by thiol-ene coupling. In the final part of studies, the synthesis of thiodisaccharides by a classical photoinduced thiol-ene coupling was successfully achieved. Reagents and conditions: 2,2-Dimethoxy-2-phenylacetophenone (DPAP), CH2Cl2/EtOH, hv, rt. Scheme III. Thiol-ene coupling between 2-thiols and exo-glycals. During the course of investigations, it was found that the steric hindrance plays an important role in the addition of bulky thiols to endo-glycals. Thus, we successfully screened the suitable substrates for addition of various thiols to sterically less hindered alkenes (Scheme III). The photochemical addition of 2-thiols to three different exo-glycals delivered excellent regio- and diastereoselectivities as well as yields, which underlines the synthetic potential of this convenient methodology. N2 - I. Cerammoniumnitrat (CAN) vermittelte Thiocyanat Radikaladditionen an Glycale In dieser Dissertation wurde ein einfacher synthetischer Zugang zu 2-Thiokohlenhydraten und dessen Transformationsprodukten entwickelt. Zu Beginn wurden CAN vermittelte Funktionalisierungen von Kohlenhydraten mit Thiocyanat durchgeführt, um die notwendigen Ausgangsverbindungen (2-Thiocyanate) für die weiteren Studien zu erhalten. Im Folgenden wurden diese 2-Thiocyanate mit entsprechenden Reagenzien unter geeigneten Reduktionsbedingungen zu den Thiolen reduziert. Das Screening der Substrate, der stereochemische Verlauf und der Reaktionsmechanismus wird kurz diskutiert (Schema I). Schema I. Synthese der 2-Thiocyanate II und Reduktionen zu den 2-Thiolen III & IV. Es wurde ein interessanter Mechanismus für die Reduktion der 2-Thiocyanate II zu den 2-Thiolen III via Bildung von Disulfid-Zwischenstufen vorgeschlagen. Die wasserlöslichen freien Thiole IV wurden durch Spaltung der Thiocyanat- und Benzylgruppen in einem Einzelschritt freigesetzt. Im darauf folgenden Teil der Arbeit wurde das synthetische Potenzial der 2-Tiole erfolgreich durch einfache synthetische Transformationen erweitert. II. Transformationen der 2-Thiokohlenhydrate Die 2-Thiole wurden für die Ausführung praktischer Transformationen eingesetzt, die Sulfa-Michael Additionen, nukleophile Substitutionen, Oxidationen zu Disulfiden und Funktionalisierungen an der anomeren Position beinhalten. Die mannigfaltigen Funktionalisierungen der Kohlenhydrate an den C-2 Positionen mittels der Schwefel Gruppe ist das hervortretende Merkmal dieser Arbeit. Reagenzien und Reaktionsbedingungen: a) I2, Pyridin, THF, rt, 15 min; b) K2CO3, MeCN, rt, 1 h; c) MeI, K2CO3, DMF, 0 °C, 5 min; d) Ac2O, H2SO4 (1 Tropfen), rt, 10 min; e) CAN, MeCN/H2O, NH4SCN, rt, 1 h; f) NaN3; ZnBr2; iPrOH/H2O, Rückfluss 15 h; g) NaOH (1 M), TBAI, Benzol, rt 2 h; h) ZnCl2, CHCl3, Rückfluss, 3 h. Schema II. Funktionalisierungen von 2-Thiokohlenhydraten Daraus eröffnet sich die Möglichkeit, den Nutzwert von 2-Thiokohlenhydraten auf biologische Studien auszuweiten. Diese Transformationen haben den synthetischen Wert von 2-Thiokohlenhydraten für den präparativen Maßstab gesteigert. Hervorzuheben ist hier der Lewis Säure katalysierte Austausch der Methoxygruppe durch weitere Nukleophile und die Synthese von (2→1) Thiodisacchariden, die mit quantitativer β-Selektivität erhalten wurden. Zusätzlich wurde zum ersten Mal ein Zucker gebundenes Thiotetrazol über eine (3+2) Cycloaddition an der C-2 Position synthetisiert. III. Synthese von Thiodisacchariden durch Thiol-En-Kopplungen Im letzten Teil der Arbeit gelang die Synthese von Thiodisacchariden durch eine klassische Thiol-En-Kopplung. Reagenzien und Reaktionsbedingungen: 2,2-Dimethoxy-2-phenylacetophenone (DPAP), CH2Cl2/EtOH, hv, rt. Schema III. Thiol-En-Kopplungen zwischen 2-Thiolen und exo-Glycalen. Im Verlauf der Untersuchungen wurde aufgezeigt, dass die räumlische Hinderung bei der Addition von sterisch anspruchsvollen 2-Thiolen an endo-Glycale eine wichtige Rolle spielt. Dazu erprobten wir geeignete Substrate zur Addition von 2-Thiolen an sterisch wenig anspruchsvolle Alkene (Schema III). Die photochemische Addition der 2-Thiole an drei verschiedene exo-Glycale lieferte exzellente Regio- und Diastereoselektivitäten und Ausbeuten, was das synthetische Potenzial dieser bequem durchführbaren Methodik unterstreicht. KW - carbohydrates KW - 2-Thiodisaccharides KW - radical reactions KW - Ceric Ammonium Nitrate (CAN) KW - photochemistry KW - Kohlenhydrate KW - 2-Thiodisaccharide KW - Radikalreaktionen KW - Cer Ammonium Nitrat (CAN) KW - Photochemie Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-397739 ER - TY - THES A1 - Fischer, Thomas T1 - Lichtinduzierte Orientierungsprozesse in Azobenzen-Polymeren T1 - Lightinduced orientation processes in azobenzene polymers N2 - Die Beeinflussung optischer Eigenschaften durch Bestrahlung stellt eine Grundlage für die Herstellung anisotroper optischer Komponenten dar. In dünnen Schichten von Azobenzen-Polymeren kann optische Anisotropie durch linear polarisierte Bestrahlung induziert oder modifiziert werden. Ziel der Arbeit war es, wesentliche Struktur-Eigenschafts-Beziehungen zum Prozess der Photoorientierung zu erarbeiten, um so eine Optimierung der Materialien für verschiedene Anwendungen ermöglichen. In isotropen Schichten flüssigkristalliner und amorpher Azobenzen-Polymeren wird das Ausmaß der induzierten optischen Anisotropie günstig durch eine Donor/Akzeptor-Substitution in 4,4'-Position beeinflusst. Die Induktionsgeschwindigkeit ist in Schichten flüssigkristalliner Polymeren deutlich geringer, jedoch lassen sich höhere Werte der Doppelbrechung und des Dichroismus erreichen. In Copolymeren bewirkt die Photoorientierung der Azobenzen-Seitengruppen eine kooperative Orientierung von formanisotropen Seitengruppen. Die Mesogenität der nicht-photochromen Seitengruppen erhöht das Ausmaß der induzierten optischen Anisotropie. Die Stabilität der induzierten Doppelbrechung und des Dichroismus wird durch diese Gruppen gesteigert. In Schichten flüssigkristalliner Polymeren wird die induzierte optische Anisotropie beim Tempern im Bereich der Mesophasen erheblich verstärkt. Dabei reicht ein geringes Maß an induzierter Anisotropie aus, um Doppelbrechungs- und Dichroismuswerte zu erzielen, wie sie für LC-Domänen typisch sind. In orientierten Schichten von Azobenzen-Polymeren wird das Resultat der linear polarisierten Bestrahlung durch die Stärke der anisotropen Wechselwirkungen in den flüssigkristallinen Domänen oder den LB-Multilayern bestimmt. Eine lichtinduzierte Reorientierung kann nur erreicht werden, wenn diese Wechselwirkungen überwunden werden können. Erfolgt eine Photoreorientierung in den orientierten Polymerschichten, werden in Copolymeren formanisotrope Seitengruppen ebenfalls kooperativ reorientiert. Eine vorgelagerte UV-Bestrahlung kann durch Erzeugung eines hohen Anteils an nicht-mesogenen Z-Isomeren die anisotropen Wechselwirkungen stark schwächen und so die Seitengruppen entkoppeln. Aus diesem Zustand erfolgt die Photoreorientierung mit einer der Photoorientierung in isotropen Schichten vergleichbaren Effizienz. Die erarbeiteten Struktur-Eigenschafts-Beziehungen liefern einen Beitrag zur Optimierung derartiger Materialien für Anwendungen in den Bereichen optischer Funktionsschichten, holographischer Datenspeicherung oder der Generierung von Oberflächenreliefgittern. N2 - The modification of optical characteristics by irradiation represents a basis for the creation of anisotropic optical components. In thin films of azobenzene polymers optical anisotropy can be induced or modified by linearly polarized irradiation. The goal of the work was it to compile substantial structure property relations of the photoorientation process in order to support an optimization of the materials for different applications. In isotropic films of liquid crystalline and amorphous azobenzene polymers the extent of the induced optical anisotropy is increased by a donor/acceptor substitution in 4,4'-position. The induction speed is clearly smaller in films of liquid crystalline polymers, however higher values of birefringence and dichroism can be reached. In copolymers the photoorientation of the azobenzene side groups causes a cooperative orientation of form-anisotropic side groups. The mesogenity of the non-photochromic side groups increases the extent of the induced optical anisotropy. The stability of the induced birefringence and dichroism is increased by these groups considerably. In films of liquid crystalline polymers the induced optical anisotropy is substantially amplified on annealing within the range of the mesophases. In this way, a small ratio of induced anisotropy is sufficient, in order to obtain birefringence and dichroism values as typical for LC domains. In oriented films of azobenzene polymers the result of the linear polarized irradiation is determined by the strength of the anisotropic interactions in the liquid crystalline domains or the LB multilayers. A light-induced reorientation can be only achieved, if these interactions can be overcome. If a photoreorientation takes place in the oriented layers of copolymers, form-anisotropic side groups are cooperatively reoriented. An initial UV irradiation can strongly weaken the anisotropic interactions by generating of a high fraction of non-mesogenic z-isomers and decouples in this way the side groups. From this state the photoreorientation proceeds with an efficiency one comparable to the photoorientation in isotropic films. The compiled structure property relations supplies a contribution for the optimization of such materials for applications in the fields of optical function films, holographic data storage or the generation of surface relief gratings. KW - Flüssigkristalline Polymere KW - Amorphe Polymere KW - Photochemie KW - Orientierungsbewegung KW - Lichtinduzierter Effekt KW - Azobenzen KW - Photoorientierung KW - Kooperativität KW - Linear polarisierte Bestrahlung KW - LB-Multilayer KW - azobenzene KW - photoorientation KW - cooperativity KW - linearly polarized irradiation KW - LB-multilayer Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7133 ER -