TY - JOUR A1 - Dodoo, Samuel A1 - Balzer, Bizan N. A1 - Hugel, Thorsten A1 - Laschewsky, André A1 - von Klitzing, Regine T1 - Effect of ionic strength and layer number on swelling of polyelectrolyte multilayers in water vapour JF - Soft materials N2 - The swelling behavior of polyelectrolyte multilayers (PEMs) of poly(sodium-4 styrene sulfonate) (PSS) and poly(diallyl dimethyl ammonium chloride) (PDADMAC) prepared from aqueous solution of 0.1 M and 0.5 M NaCl are investigated by ellipsometry and Atomic Force Microscopy (AFM). From 1 double-layer up to 4 double-layers of 0.1 M NaCl, the amount of swelling water in the PEMs decreases with increasing number of adsorbed double layers due to an increase in polyelectrolyte density as a result of the attraction between the positively charged outermost PDADMAC layer and the Si substrate. From 6 double layers to 30 double layers, the attraction is reduced due to a much larger distance between substrate and outermost layer leading to a much lower polyelectrolyte density and higher swelling water. In PEMs prepared from aqueous solution of 0.5 M NaCl, the amount of water constantly increases which is related to a monotonically decreasing polyelectrolyte density with increasing number of polyelectrolyte layers. Studies of the surface topology also indicate a transition from a more substrate affected interphase behavior to a continuum properties of the polyelectrolyte multilayers. The threshold for the transition from interphase to continuum behavior depends on the preparation conditions of the PEM. KW - Continuum properties KW - Interphase behavior KW - Ionic strength KW - Multilayers KW - Polyelectrolytes KW - Substrate effect KW - Swelling behavior KW - Threshold KW - Water vapor Y1 - 2013 U6 - https://doi.org/10.1080/1539445X.2011.607203 SN - 1539-445X VL - 11 IS - 2 SP - 157 EP - 164 PB - Taylor & Francis Group CY - Philadelphia ER - TY - THES A1 - Prevot, Michelle Elizabeth T1 - Introduction of a thermo-sensitive non-polar species into polyelectrolyte multilayer capsules for drug delivery T1 - Einbettung unpolarer, temperaturempfindlicher Substanzen in Polyelektrolytkapselsysteme zur Wirkstofffreisetzung N2 - The layer-by-layer assembly (LBL) of polyelectrolytes has been extensively studied for the preparation of ultrathin films due to the versatility of the build-up process. The control of the permeability of these layers is particularly important as there are potential drug delivery applications. Multilayered polyelectrolyte microcapsules are also of great interest due to their possible use as microcontainers. This work will present two methods that can be used as employable drug delivery systems, both of which can encapsulate an active molecule and tune the release properties of the active species. Poly-(N-isopropyl acrylamide), (PNIPAM) is known to be a thermo-sensitive polymer that has a Lower Critical Solution Temperature (LCST) around 32oC; above this temperature PNIPAM is insoluble in water and collapses. It is also known that with the addition of salt, the LCST decreases. This work shows Differential Scanning Calorimetry (DSC) and Confocal Laser Scanning Microscopy (CLSM) evidence that the LCST of the PNIPAM can be tuned with salt type and concentration. Microcapsules were used to encapsulate this thermo-sensitive polymer, resulting in a reversible and tunable stimuli- responsive system. The encapsulation of the PNIPAM inside of the capsule was proven with Raman spectroscopy, DSC (bulk LCST measurements), AFM (thickness change), SEM (morphology change) and CLSM (in situ LCST measurement inside of the capsules). The exploitation of the capsules as a microcontainer is advantageous not only because of the protection the capsules give to the active molecules, but also because it facilitates easier transport. The second system investigated demonstrates the ability to reduce the permeability of polyelectrolyte multilayer films by the addition of charged wax particles. The incorporation of this hydrophobic coating leads to a reduced water sensitivity particularly after heating, which melts the wax, forming a barrier layer. This conclusion was proven with Neutron Reflectivity by showing the decreased presence of D2O in planar polyelectrolyte films after annealing creating a barrier layer. The permeability of capsules could also be decreased by the addition of a wax layer. This was proved by the increase in recovery time measured by Florescence Recovery After Photobleaching, (FRAP) measurements. In general two advanced methods, potentially suitable for drug delivery systems, have been proposed. In both cases, if biocompatible elements are used to fabricate the capsule wall, these systems provide a stable method of encapsulating active molecules. Stable encapsulation coupled with the ability to tune the wall thickness gives the ability to control the release profile of the molecule of interest. N2 - Verkapselung ist ein vielseitiges Werkzeug, das zum Schutz und zum Transport von Molekülen ebenso eingesetzt werden kann, wie zur Verbindung von Reaktionspartnern in einem gemeinsamen, von der Umgebung abgeschirmten Raum. Es basiert auf einem einfachen Vorbild der Natur. Pflanzen schützen ihren Samen zum Beispiel durch eine harte, nahezu undurchdringbare Schale (Nüsse) oder durch eine selektiv durchlässige Hülle, wie bei Weizen, der sobald er feucht wird zu keimen beginnt. Die Natur setzt durch den Einsatz des Hülle-Kern Prinzips sehr effizient die Kontrolle über Durchlässigkeit und Anpassung an bestimmte Aufgaben um. Wird das Hülle-Kern-Prinzip zum Schutz oder Transport von Molekülen eingesetzt, so sind die zu verwendenden Kapseln nur wenige Mikrometer groß. Sie werden dann als Mikrokapseln bezeichnet. Zur Erzeugung dieser Mikrokapseln werden verschiedene Methoden verwendet. Der heute übliche Weg geht von einer ca. 5-10 Mikrometer großen Kugel (Kern) aus, die mit einer stabilen und an die gewünschten Eigenschaften angepassten Schicht von wenigen Nanometern versehen wird. Im Anschluss wird der Kern herausgelöst und eine hohle, stabile Kapsel erhalten. Schichten von wenigen Nanometern Dicke können aus Polyelektrolyten durch das Layer-by-Layer-Verfahren (LbL) hergestellt werden. Dieses Verfahren eignet sich auf Grund seiner vielen Anpassungsmöglichkeiten besonders zum Aufbau der Schichten für Mikrokapseln, da sich die Eigenschaften der Beschichtung bereits beim Aufbau der Schicht auf die Bedürfnisse maßschneidern lassen. Diese Arbeit befasst sich mit der Erzeugung von Mikrokapseln, deren Eigenschaften temperaturabhängig sind. Dies wurde auf zwei Wegen erreicht. Zum einen wurden Kapseln aus Polyelektrolyten und Wachs aufgebaut. Bei Temperaturerhöhung schmilzt das Wachs und versiegelt die Kapsel. Zum anderen werden Kapseln mit einem Wärme empfindlichen Polymer gefüllt. Bei Temperaturerhöhung kollabiert das Polymergerüst. Der enthaltene Wirkstoff wird freigesetzt. KW - Mikrokapsel KW - Polyelektrolyt KW - Mehrschichtsysteme KW - Polyelectrolyte KW - Multilayers KW - Capsule Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7785 ER - TY - THES A1 - Beissenhirtz, Moritz Karl T1 - Proteinmultischichten und Proteinmutanten für neuartige empfindliche Superoxidbiosensoren T1 - Protein Multilayers and Protein Mutants for novel sensitive Superoxide Biosensors N2 - Das Superoxidradikal kann mit fast allen Bestandteilen von Zellen reagieren und diese schädigen. Die medizinische Forschung stellte eine Beteiligung des Radikals an Krebs, Herzinfarkten und neuraler Degeneration fest. Ein empfindlicher Superoxidnachweis ist daher zum besseren Verständnis von Krankheitsverläufen wichtig. Dabei stellen die geringen typischen Konzentrationen und seine kurze Lebensdauer große Anforderungen. Ziel dieser Arbeit war es zum einen, zwei neuartige Proteinarchitekturen auf Metallelektroden zu entwickeln und deren elektrochemisches Ansprechverhalten zu charakterisieren. Zum anderen waren diese Elektroden zur empfindlichen quantitativen Superoxiddetektion einzusetzen. Im ersten Teil der Arbeit wurde eine Protein-Multischichtelektrode aus Cytochrom c und dem Polyelektrolyten Poly(anilinsulfonsäure) nach dem Layer-by-layer-Verfahren aufgebaut. Für zwei bis 15 Schichten an Protein wurde eine deutliche Zunahme an elektrodenaktivem Cytochrom c mit jedem zusätzlichen Aufbringungsschritt nachgewiesen. Die Zunahme verlief linear und ergab bei 15 Schichten eine Zunahme der redoxaktiven Proteinmenge um deutlich mehr als eine Größenordnung. Während das formale Potential im Multischichtsystem sich im Vergleich zur Monoschichtelektrode nicht veränderte, wurde für die Kinetik eine Abhängigkeit der Geschwindigkeit des Elektronentransfers von der Zahl der Proteinschichten beobachtet. Mit zunehmender Scangeschwindigkeit trat ein reversibler Kontaktverlust zu den äußeren Schichten auf. Die lineare Zunahme an elektroaktivem Protein mit steigender Zahl an Depositionsschritten unterscheidet sich deutlich von in der Literatur beschriebenen Protein/Polyelektrolyt-Multischichtelektroden, bei denen ab etwa 6-8 Schichten keine Zunahme an elektroaktivem Protein mehr festgestelltwurde. Auch ist bei diesen die Zunahme an kontaktierbaren Proteinmolekülen auf das Zwei- bis Fünffache limitiert. Diese Unterschiede des neu vorgestellten Systems zu bisherigen Multischichtassemblaten erklärt sich aus einem in dieser Arbeit für derartige Systeme erstmals beschriebenen Elektronentransfermechanismus. Der Transport von Elektronen zwischen der Elektrodenoberfläche und den Proteinmolekülen in den Schichten verläuft über einen Protein-Protein-Elektronenaustausch. Dieser Mechanismus beruht auf dem schnellen Selbstaustausch von Cytochrom c-Molekülen und einer verbleibenden Rotationsflexibilität des Proteins im Multischichtsystem. Die Reduzierung des Proteins durch das Superoxidradikal und eine anschließende Reoxidation durch die Elektrode konnten nachgewiesen werden. In einem amperometrischen Messansatz wurde das durch Superoxidradikale hervorgerufene elektrochemische Signal in Abhängigkeit von der Zahl an Proteinschichten gemessen. Ein maximales Ansprechverhalten auf das Radikal wurde mit 6-Schichtelektroden erzielt. Die Empfindlichkeit der 6-Schichtelektroden wurde im Vergleich zum Literaturwert der Monoschichtelektrode um Faktor 14, also mehr als eine Größenordnung, verbessert. Somit konnte eine Elektrode mit 6 Schichten aus Cytochrom c und Poly(anilinsulfonsäure) als neuartiger Superoxidsensor mit einer 14-fachen Verbesserung der Empfindlichkeit im Vergleich zum bislang benutzten System entwickelt werden. Der zweite Teil dieser Arbeit beschreibt die Auswahl, Gewinnung und Charakterisierung von Mutanten des Proteins Cu,Zn-Superoxiddismutase zur elektrochemischen Quantifizierung von Superoxidradikalen. Monomere Mutanten des humanen dimeren Enzyms wurden entworfen, die durch Austausch von Aminosäuren ein oder zwei zusätzliche Cysteinreste besaßen, mit welchem sie direkt auf der Goldelektrodenoberfläche chemisorbieren sollten. 6 derartige Mutanten konnten in ausreichender Menge und Reinheit in aktiver Form gewonnen werden. Die Bindung der Superoxiddismutase-Mutanten an Goldoberflächen konnte durch Oberflächen-plasmonresonanz und Impedanzspektroskopie nachgewiesen werden. Alle Mutanten wiesen einen quasi-reversiblen Elektronentransfer zwischen SOD und Elektrode auf. Durch Untersuchung von kupferfreien SOD-Mutanten sowie des Wildtyps konnte nachgewiesen werden, das die Mutanten über die eingefügten Cysteinreste auf der Elektrode chemisorptiv gebunden wurden und der Elektronentransfer zwischen der Elektrode und dem Kupfer im aktiven Zentrum der SOD erfolgte. Die Superoxiddismutase katalysiert die Zersetzung von Superoxidmolekülen durch Oxidation und durch Reduktion der Radikale. Somit sind beide Teilreaktionen von analytischem Interesse. Zyklovoltammetrisch konnte sowohl die Oxidation als auch die Reduktion des Radikals durch die immobilisierten Superoxiddismutase-Mutanten nachgewiesen werden. In amperometrischen Messanordnungen konnten beide Teilreaktionen zur analytischen Quantifizierung von Superoxidradikalen genutzt werden. Im positiven Potentialfenster wurde die Empfindlichkeit um einen Faktor von etwa 10 gegenüber der Cytochrom c–Monoschichtelektrode verbessert. N2 - The superoxide radical can react with almost all components of a cell and thus damage them. Enzymatic and non-enzymatic scavengers remove it from the body. An implication of the radical in cancer, heart disease, and neuronal degredation has been found in medical research. Therefore, a sensitive quantification of superoxide is necessary for a better understanding of diseases as well as for the study of biological degradation processes. The aim of this work was to develop two new protein architectures on metal electrodes and to characterize their electrochemical behavior. Secondly, both electrodes were to be applied as superoxide biosensors. In the first part of the work, a protein multilayer electrode consisting of cytochrome c and the polyelectrolyte poly(aniline sulfonated acid) was built up by the layer-by-layer procedure. SPR experiments proved the formation of multilayers. For 2 to 15 protein layers, a significant increase in electroactive protein was found with every deposition step in a linear fashion. For 15 layers, this increase was found to be more than one order of magnitude. While the formal potential did not change for the proteins in the layers, the rate of electron transfer was found to be dependent on the number of layers deposited. With increased scanning speed, a reversible loss of contact to the outer layers was noted. The linear increase in electroactive protein loading differed significantly from protein/polyelectrolyte electrodes described in the literature, where after 6-8 layers no further increase was found. Additionally, these systems increase the number of electroactive protein molecules only by a factor of 2 to 5. These differences can be explained by an electron transfer mechanism which was demonstrated in this work for the first time. The transport of electrons between the electrode surface and the proteins in the layers takes place by a protein-protein electron transfer. This mechanism relies on the fast self-exchange of cytochrome c and a residual rotational flexibility of the protein molecules inside the structure. The reduction of the protein by the radical and its subsequent reoxidation by the electrode could be shown. In the amperometric mode, the sensor signal was determined for 2 to 15 layer electrodes. A maximum signal was found for 6 layers, where the sensitivity was improved by a factor of 14, compared to monolayer sensors. The second part of this work describes the selection, production and characterization of mutants of the protein Cu,Zn-superoxide dismutase and their application as superoxide sensors. Monomeric mutants of the human dimeric enzyme were designed, which contained one ore two additional cysteines in order to chemisorb directly onto gold surfaces. 6 such mutants were gained in sufficient amount and purity. The binding to gold was characterized by surface plasmon resonance studies. All mutants showed quasi-reversible electrochemistry on gold electrodes. Experiments with copper-free mutants and the wildtype enzyme proved that the mutants bind to gold via the additional cysteines, while the electron transfer takes place between the electrode and the active site copper. Superoxide dismutases catalyze the removal of superoxide by both oxidation and reduction. Thus, both partial reactions are of analytical interest. In cyclic voltammetry, both oxidation and reduction of the radical could be proved. In amperometric experiments, both reactions were used for a quantification of superoxide concentrations. In the positive potential window, the sensitivity was found to be increased by about one order of magnitude, as compared to the cytochrome c monolayer electrode. ----------- Hinweis zum Copyright:Einige Abbildungen dieser Arbeit sind in Artikeln des Verfassers in den Zeitschriften Angewandte Chemie, Angewandte Chemie International Edition, Analytical Chemisty und Elektroanalysis erschienen. Ihre Darstellung im Rahmen dieser Arbeit erfolgt auch online mit ausdrücklicher Genehmigung der Verlage. KW - Biosensor KW - Superoxiddismutasen KW - Hyperoxide KW - Mutation KW - Cytochrom c KW - Polyelektrolyt KW - Biosensor KW - Cytochome c KW - Superoxide Dismutase KW - Mutations KW - Multilayers Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5661 ER -