TY - JOUR A1 - Wiljes, Jana de A1 - Tong, Xin T. T1 - Analysis of a localised nonlinear ensemble Kalman Bucy filter with complete and accurate observations JF - Nonlinearity N2 - Concurrent observation technologies have made high-precision real-time data available in large quantities. Data assimilation (DA) is concerned with how to combine this data with physical models to produce accurate predictions. For spatial-temporal models, the ensemble Kalman filter with proper localisation techniques is considered to be a state-of-the-art DA methodology. This article proposes and investigates a localised ensemble Kalman Bucy filter for nonlinear models with short-range interactions. We derive dimension-independent and component-wise error bounds and show the long time path-wise error only has logarithmic dependence on the time range. The theoretical results are verified through some simple numerical tests. KW - data assimilation KW - stability and accuracy KW - dimension independent bound KW - localisation KW - high dimensional KW - filter KW - nonlinear Y1 - 2020 U6 - https://doi.org/10.1088/1361-6544/ab8d14 SN - 0951-7715 SN - 1361-6544 VL - 33 IS - 9 SP - 4752 EP - 4782 PB - IOP Publ. CY - Bristol ER - TY - JOUR A1 - Pathiraja, Sahani Darschika A1 - Reich, Sebastian A1 - Stannat, Wilhelm T1 - McKean-Vlasov SDEs in nonlinear filtering JF - SIAM journal on control and optimization : a publication of the Society for Industrial and Applied Mathematics N2 - Various particle filters have been proposed over the last couple of decades with the common feature that the update step is governed by a type of control law. This feature makes them an attractive alternative to traditional sequential Monte Carlo which scales poorly with the state dimension due to weight degeneracy. This article proposes a unifying framework that allows us to systematically derive the McKean-Vlasov representations of these filters for the discrete time and continuous time observation case, taking inspiration from the smooth approximation of the data considered in [D. Crisan and J. Xiong, Stochastics, 82 (2010), pp. 53-68; J. M. Clark and D. Crisan, Probab. Theory Related Fields, 133 (2005), pp. 43-56]. We consider three filters that have been proposed in the literature and use this framework to derive Ito representations of their limiting forms as the approximation parameter delta -> 0. All filters require the solution of a Poisson equation defined on R-d, for which existence and uniqueness of solutions can be a nontrivial issue. We additionally establish conditions on the signal-observation system that ensures well-posedness of the weighted Poisson equation arising in one of the filters. KW - data assimilation KW - feedback particle filter KW - Poincare inequality KW - well-posedness KW - nonlinear filtering KW - McKean-Vlasov KW - mean-field equations Y1 - 2022 U6 - https://doi.org/10.1137/20M1355197 SN - 0363-0129 SN - 1095-7138 VL - 59 IS - 6 SP - 4188 EP - 4215 PB - Society for Industrial and Applied Mathematics CY - Philadelphia ER - TY - JOUR A1 - Hastermann, Gottfried A1 - Reinhardt, Maria A1 - Klein, Rupert A1 - Reich, Sebastian T1 - Balanced data assimilation for highly oscillatory mechanical systems JF - Communications in applied mathematics and computational science : CAMCoS N2 - Data assimilation algorithms are used to estimate the states of a dynamical system using partial and noisy observations. The ensemble Kalman filter has become a popular data assimilation scheme due to its simplicity and robustness for a wide range of application areas. Nevertheless, this filter also has limitations due to its inherent assumptions of Gaussianity and linearity, which can manifest themselves in the form of dynamically inconsistent state estimates. This issue is investigated here for balanced, slowly evolving solutions to highly oscillatory Hamiltonian systems which are prototypical for applications in numerical weather prediction. It is demonstrated that the standard ensemble Kalman filter can lead to state estimates that do not satisfy the pertinent balance relations and ultimately lead to filter divergence. Two remedies are proposed, one in terms of blended asymptotically consistent time-stepping schemes, and one in terms of minimization-based postprocessing methods. The effects of these modifications to the standard ensemble Kalman filter are discussed and demonstrated numerically for balanced motions of two prototypical Hamiltonian reference systems. KW - data assimilation KW - ensemble Kalman filter KW - balanced dynamics KW - highly KW - oscillatory systems KW - Hamiltonian dynamics KW - geophysics Y1 - 2021 U6 - https://doi.org/10.2140/camcos.2021.16.119 SN - 1559-3940 SN - 2157-5452 VL - 16 IS - 1 SP - 119 EP - 154 PB - Mathematical Sciences Publishers CY - Berkeley ER - TY - THES A1 - Schwetlick, Lisa T1 - Data assimilation for neurocognitive models of eye movement T1 - Datenassimilation für Neurokognitive Modelle in der Blickbewegungsforschung N2 - Visual perception is a complex and dynamic process that plays a crucial role in how we perceive and interact with the world. The eyes move in a sequence of saccades and fixations, actively modulating perception by moving different parts of the visual world into focus. Eye movement behavior can therefore offer rich insights into the underlying cognitive mechanisms and decision processes. Computational models in combination with a rigorous statistical framework are critical for advancing our understanding in this field, facilitating the testing of theory-driven predictions and accounting for observed data. In this thesis, I investigate eye movement behavior through the development of two mechanistic, generative, and theory-driven models. The first model is based on experimental research regarding the distribution of attention, particularly around the time of a saccade, and explains statistical characteristics of scan paths. The second model implements a self-avoiding random walk within a confining potential to represent the microscopic fixational drift, which is present even while the eye is at rest, and investigates the relationship to microsaccades. Both models are implemented in a likelihood-based framework, which supports the use of data assimilation methods to perform Bayesian parameter inference at the level of individual participants, analyses of the marginal posteriors of the interpretable parameters, model comparisons, and posterior predictive checks. The application of these methods enables a thorough investigation of individual variability in the space of parameters. Results show that dynamical modeling and the data assimilation framework are highly suitable for eye movement research and, more generally, for cognitive modeling. N2 - Die visuelle Wahrnehmung ist einer der komplexesten Sinne, die dem Menschen zur Verfügung stehen. Jede Sekunde werden 108 - 109 bits Information von Lichtrezeptoren in den Augen aufgenommen und verarbeitet. Dieser Verarbeitung liegen komplexe und dynamische Prozesse zugrunde, die diese große Menge an Informationen in ein kohärentes Perzept verwandeln. Da nur ein kleiner Bereich, die Fovea, hohe Auflösung aufnehmen kann, bildet die Anordnung der Lichtrezeptoren in der Retina den ersten Filtermechanismus dieses Systems. Um trotzdem das gesamte visuelle Feld scharf sehen zu können, bewegen sich die Augen nach und nach über die verschiedenen Elemente der visuellen Welt. Dabei werden interessante oder relevante Inhalte in den Fokus gerückt. Die Bewegung erfolgt in einer Reihe von schnellen Bewegungen (Sakkaden) und relativen Ruheperioden (Fixationen). Während der Fixationen ist das Auge allerdings nicht still, stattdessen sorgen mikroskopische Bewegungen, ein langsamer Drift und schnelle Mikrosakkaden, für eine konstante Bewegung des Auges. Die Auswahl der Fixationsorte sowie die Bewegung an sich bieten Hinweise auf die Verarbeitungsprozesse, die der visuellen Wahrnehmung zugrunde liegen. Wahrnehmung und Handlung sind besonders im Falle der Blickbewegung eng verknüpft und voneinander abhängig: die Bewegung beeinflusst, welche visuelle Information auf die Rezeptoren trifft und die Wahrnehmung ist entscheidend für die Auswahl der Bewegung. In meiner Dissertation entwickele ich einen dynamischen Ansatz zur Modellierung von kognitiven Prozessen, der die Entfaltung von Wahrnehmung und Handlung über die Zeit in den Vordergrund stellt. Darüber hinaus sind die angewendeten Modelle mechanistisch, d.h. sie stützen sich auf biologisch plausible Mechanismen zur Erzeugung von Verhalten. Ein mechanistischer, dynamischer Modellierungsansatz birgt einige entscheidende Vorteile für den wissenschaftlichen Erkenntnisgewinn. Ergebnisse aus der Literatur und der experimentellen Forschung dienen als Grundlage, um Verhalten zu erklären. Zeigt das Modell auf Basis dieser Mechanismen tatsächlich das erwartete Verhalten, so ist dies ein starkes Indiz für die aufgestellten Hypothesen für dessen Ursache. Des Weiteren entsteht komplexes Verhalten zumeist nicht monokausal, sondern aus einer Zusammenkunft an Ursachen oder als emergente Eigenschaft. Die Modellieung erlaubt es uns, solche komplexen Prozesse durch Variationen und Veränderungen des Modells im Detail besser zu verstehen. Der methodische Rahmen des Modellierungsansatzes stützt sich auf die umfangreiche Literatur zur dynamischen Modellierung und die Bayes’sche Likelihood-basierte Parameterinferenz. Modelle werden mithilfe dieser statistischen Methoden optimiert, sodass die statistisch bestmögliche Passung von Modell und Daten erreicht wird. Möglich gemacht wird diese Optimierung durch die Likelihood Funktion des Modells, d.h. es wird die Wahrscheinlichkeit der Daten gegeben des Modells errechnet. Zudem werden durch das Variieren der Parameter oder durch analytische Verfahren jene Parameter gewählt, welche die höchste Wahrscheinlichkeit ergeben. Darüberhinaus kann mit Hilfe eines Bays’schen Ansatzes auch eine Approximation der Wahrscheinlichkeitsverteilung (Marginal Posterior) pro Parameter errechnet werden. Wenn durch das Modell eine Likelihood Funktion definiert wird, existiert eine gute statistische Grundlage, die starke Inferenzen erlaubt. Wenn eine solche Likelihood Funktion für ein gegebenes Modell nicht formuliert werden kann, muss die Parameterinferenz anhand von anderen Qualitätsmetriken erfolgen. Obwohl dies in der Vergangenheit in den Kognitionswissenschaften häufig der Standard war, bietet die Likelihood-basierte Modellierung doch klare Vorteile, so zum Beispiel die Unabhängigkeit von der Wahl der Metrik und eine starke statistische Basis. Modellparameter in einem mechanistischen Modell haben außerdem typischerweise eine eindeutige Bedeutung für die Mechanismen des Modells. Sie repräsentieren zum Beispiel die Größe der räumlichen Aufmerksamkeitsspanne oder die zeitliche Gedächtnisspanne. Die statistische Parameterinferenz erlaubt daher auch direkte Rückschlüsse auf die Ausprägung der Mechanismen. Zudem sind die hier behandelten Modelle auch generativ, sodass es möglich ist, Daten zu simulieren. Mithilfe von sogenannten Posterior Predictive Checks ist es möglich, das Modellverhalten direkt mit experimentell beobachtetem Verhalten zu vergleichen. Im Rahmen dieser Arbeit wird der beschriebene Modellierungsansatz auf zwei Modelle menschlicher Blickbewegungen angewandt. Das erste Modell beschreibt dabei die Auswahl der Fixationsorte bei der Betrachtung von Szenen. Es modelliert explizit die Dynamik der Aufmerksamkeit und deren Auswirkungen auf die Blickbewegung. Das zweite Modell beschreibt die mikroskopischen fixationalen Driftbewegungen mithilfe eines Self-Avoiding Walks. Beide Modelle sind dynamische Modelle mit interpretierbaren Parametern und einer Likelihood Funktion. Somit kann für beide Modelle Bayes’sche Parameterinferenz auf Versuchspersonenebene ermöglicht werden. In der ersten im Rahmen dieser Dissertation präsentierten Arbeit verwenden wir das SceneWalk Modell. Dieses besteht grundsätzlich aus einer Aktivations- und einer Inhibitionskomponente, die sich jeweils über die Zeit mittels einer Differenzialgleichung entwickeln. Die Summe beider Komponenten ergibt für jeden Punkt auf einem diskreten Gitter die Wahrscheinlichkeit eine Sakkade zu diesem Punkt. Experimentelle Forschung zeigt, dass die visuelle Aufmerksamkeit kurz vor einer Sakkade bereits auf den nächsten Fixationsort verlagert wird. Des Weiteren gibt es nach der Sakkade Evidenz für eine Verschiebung der Aufmerksamkeit in die Richtung der Sakkade, aber über den intendierten Fixationsort hinaus. Hier erweitern wir das SceneWalk Modell, indem wir Aufmerksamkeitsprozesse rund um den Zeitpunkt der Sakkade implementieren. Diese Aufmerksamkeitsprozesse erwirken bei den Modiellierungergebnissen eine verbesserte Passung zwischen Daten und Modell und bieten einen Erklärungsansatz für die charakteristischen Winkelverteilungen von aufeinanderfolgenden Sakkaden. In dieser Arbeit zeigen wir außerdem, dass es möglich ist, mittels Bayes’scher Inferenz, separate und aussagekräftige Parameter für einzelne Individuen zu schätzen. In der zweiten Arbeit wenden wir dasselbe Modell, SceneWalk, und die Bayes’sche Inferenz nicht nur auf die Modellierung von verschiedenen Individuen, sondern auch verschiedenen Aufgaben an. Wir zeigen hier Evidenz für systematische Unterschiede in den dynamischen Aufmerksamkeitsparametern, die durch das Modell erfasst werden können. Überdies erweitern wir das SceneWalk Modell in dieser Arbeit um eine zeitliche Komponente (Spatiotemporal Likelihood), sodass jetzt auch die Fixationsdauer im Rahmen des Modells miterfasst wird. Mithilfe dieser Erweiterung finden wir Evidenz für eine Kopplung von Fixationsdauer und Salienz. Die dritte Arbeit beschäftigt sich mit einem Modell für fixationale Driftbewegungen. Das SAW-Modell verwendet einen statistischen Self-Avoiding Random Walk, d.h. eine quasi-zufällige Bewegung auf einem diskreten Gitter, die statistisch ihre eigene Trajektorie vermeidet. Das Gedächtnis der eigenen Trajektorie ist durch einen Parameter definiert. Diese Bewegung wird durch ein Potential daran gehindert, sich zu weit von ihrem Ausgangspunkt zu entfernen. Wir verwenden die selbe Methode der Bayes’schen Parameterinferenz und schätzen so Parameter für Individuen. Des Weiteren stellen wir eine explorative Analyse vor, die einen Zusammenhang zwischen der latenten Aktivierung des Models und Mikrosakkaden findet. In dieser Dissertation wird ein dynamischer Ansatz zur Modellierung von Kognition untersucht, wobei der Schwerpunkt auf Blickbewegungen und visueller Wahrnehmung liegt. Die Arbeit basiert auf der Beobachtung, dass Wahrnehmung und Handlung voneinander abhängig sind und sich im Laufe der Zeit dynamisch entfalten und, dass biologische und neurophysiologische Erkenntnisse die Randbedingungen für verhaltensbezogene Erklärungen liefern sollten. Beide vorgestellten Modelle erfassen zentrale Aspekte des Blickverhaltens sowie individuelle Unterschiede. Die Modelle erlauben eine Untersuchung der zeitlichen Dynamik ihrer jeweiligen Prozesse und können zur Simulation verschiedener Bedingungen und Aufgaben verwendet werden, um deren Auswirkungen auf das Verhalten zu analysieren. Der vorgestellte Modellierungsansatz beinhaltet die Verwendung von dynamischen und mechanistischen Modellen, statistische Inferenz von Parametern, Vergleich von statistischen Eigenschaften simulierter und experimenteller Daten und ermöglicht auch objektive Modellvergleiche. Der dynamische Ansatz zur Modellierung von Kognition ist eine plausible und adäquate Methode um die Interdependenz von Wahrnehmung und Handlung zu beschreiben. Sie bietet die Möglichkeit, Verhalten unter Verwendung theoriebasierter und experimentell fundierter Mechanismen zu erzeugen. Die hier vorgestellten Modelle zeigen das Potenzial dieses Ansatzes und können als Grundlage für weitere Forschungen auf dem Gebiet der kognitiven Modellierung dienen. KW - eye movement KW - mathematical modeling KW - dynamical models KW - data assimilation KW - scan paths KW - attention KW - Aufmerksamkeit KW - Datenassimilation KW - dynamische Modelle KW - Blickbewegungen KW - mathematische Modellierung KW - Blickpfade Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-598280 ER - TY - JOUR A1 - de Wiljes, Jana A1 - Pathiraja, Sahani Darschika A1 - Reich, Sebastian T1 - Ensemble transform algorithms for nonlinear smoothing problems JF - SIAM journal on scientific computing N2 - Several numerical tools designed to overcome the challenges of smoothing in a non-linear and non-Gaussian setting are investigated for a class of particle smoothers. The considered family of smoothers is induced by the class of linear ensemble transform filters which contains classical filters such as the stochastic ensemble Kalman filter, the ensemble square root filter, and the recently introduced nonlinear ensemble transform filter. Further the ensemble transform particle smoother is introduced and particularly highlighted as it is consistent in the particle limit and does not require assumptions with respect to the family of the posterior distribution. The linear update pattern of the considered class of linear ensemble transform smoothers allows one to implement important supplementary techniques such as adaptive spread corrections, hybrid formulations, and localization in order to facilitate their application to complex estimation problems. These additional features are derived and numerically investigated for a sequence of increasingly challenging test problems. KW - data assimilation KW - smoother KW - localization KW - optimal transport KW - adaptive KW - spread correction Y1 - 2019 U6 - https://doi.org/10.1137/19M1239544 SN - 1064-8275 SN - 1095-7197 VL - 42 IS - 1 SP - A87 EP - A114 PB - Society for Industrial and Applied Mathematics CY - Philadelphia ER - TY - JOUR A1 - Acevedo, Walter A1 - De Wiljes, Jana A1 - Reich, Sebastian T1 - Second-order accurate ensemble transform particle filters JF - SIAM journal on scientific computing N2 - Particle filters (also called sequential Monte Carlo methods) are widely used for state and parameter estimation problems in the context of nonlinear evolution equations. The recently proposed ensemble transform particle filter (ETPF) [S. Reich, SIAM T. Sci. Comput., 35, (2013), pp. A2013-A2014[ replaces the resampling step of a standard particle filter by a linear transformation which allows for a hybridization of particle filters with ensemble Kalman filters and renders the resulting hybrid filters applicable to spatially extended systems. However, the linear transformation step is computationally expensive and leads to an underestimation of the ensemble spread for small and moderate ensemble sizes. Here we address both of these shortcomings by developing second order accurate extensions of the ETPF. These extensions allow one in particular to replace the exact solution of a linear transport problem by its Sinkhorn approximation. It is also demonstrated that the nonlinear ensemble transform filter arises as a special case of our general framework. We illustrate the performance of the second-order accurate filters for the chaotic Lorenz-63 and Lorenz-96 models and a dynamic scene-viewing model. The numerical results for the Lorenz-63 and Lorenz-96 models demonstrate that significant accuracy improvements can be achieved in comparison to a standard ensemble Kalman filter and the ETPF for small to moderate ensemble sizes. The numerical results for the scene-viewing model reveal, on the other hand, that second-order corrections can lead to statistically inconsistent samples from the posterior parameter distribution. KW - Bayesian inference KW - data assimilation KW - particle filter KW - ensemble Kalman filter KW - Sinkhorn approximation Y1 - 2017 U6 - https://doi.org/10.1137/16M1095184 SN - 1064-8275 SN - 1095-7197 SN - 2168-3417 VL - 39 IS - 5 SP - A1834 EP - A1850 PB - Society for Industrial and Applied Mathematics CY - Philadelphia ER - TY - JOUR A1 - de Wiljes, Jana A1 - Reich, Sebastian A1 - Stannat, Wilhelm T1 - Long-Time stability and accuracy of the ensemble Kalman-Bucy Filter for fully observed processes and small measurement noise JF - SIAM Journal on Applied Dynamical Systems N2 - The ensemble Kalman filter has become a popular data assimilation technique in the geosciences. However, little is known theoretically about its long term stability and accuracy. In this paper, we investigate the behavior of an ensemble Kalman-Bucy filter applied to continuous-time filtering problems. We derive mean field limiting equations as the ensemble size goes to infinity as well as uniform-in-time accuracy and stability results for finite ensemble sizes. The later results require that the process is fully observed and that the measurement noise is small. We also demonstrate that our ensemble Kalman-Bucy filter is consistent with the classic Kalman-Bucy filter for linear systems and Gaussian processes. We finally verify our theoretical findings for the Lorenz-63 system. KW - data assimilation KW - Kalman Bucy filter KW - ensemble Kalman filter KW - stability KW - accuracy KW - asymptotic behavior Y1 - 2018 U6 - https://doi.org/10.1137/17M1119056 SN - 1536-0040 VL - 17 IS - 2 SP - 1152 EP - 1181 PB - Society for Industrial and Applied Mathematics CY - Philadelphia ER - TY - GEN A1 - Wiljes, Jana de A1 - Tong, Xin T. T1 - Analysis of a localised nonlinear ensemble Kalman Bucy filter with complete and accurate observations T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Concurrent observation technologies have made high-precision real-time data available in large quantities. Data assimilation (DA) is concerned with how to combine this data with physical models to produce accurate predictions. For spatial-temporal models, the ensemble Kalman filter with proper localisation techniques is considered to be a state-of-the-art DA methodology. This article proposes and investigates a localised ensemble Kalman Bucy filter for nonlinear models with short-range interactions. We derive dimension-independent and component-wise error bounds and show the long time path-wise error only has logarithmic dependence on the time range. The theoretical results are verified through some simple numerical tests. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1221 KW - data assimilation KW - stability and accuracy KW - dimension independent bound KW - localisation KW - high dimensional KW - filter KW - nonlinear Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-540417 SN - 1866-8372 VL - 33 IS - 9 SP - 4752 EP - 4782 PB - IOP Publ. CY - Bristol ER - TY - JOUR A1 - Pathiraja, Sahani Darschika A1 - Moradkhani, H. A1 - Marshall, L. A1 - Sharma, Ashish A1 - Geenens, G. T1 - Data-driven model uncertainty estimation in hydrologic data assimilation JF - Water resources research : WRR / American Geophysical Union N2 - The increasing availability of earth observations necessitates mathematical methods to optimally combine such data with hydrologic models. Several algorithms exist for such purposes, under the umbrella of data assimilation (DA). However, DA methods are often applied in a suboptimal fashion for complex real-world problems, due largely to several practical implementation issues. One such issue is error characterization, which is known to be critical for a successful assimilation. Mischaracterized errors lead to suboptimal forecasts, and in the worst case, to degraded estimates even compared to the no assimilation case. Model uncertainty characterization has received little attention relative to other aspects of DA science. Traditional methods rely on subjective, ad hoc tuning factors or parametric distribution assumptions that may not always be applicable. We propose a novel data-driven approach (named SDMU) to model uncertainty characterization for DA studies where (1) the system states are partially observed and (2) minimal prior knowledge of the model error processes is available, except that the errors display state dependence. It includes an approach for estimating the uncertainty in hidden model states, with the end goal of improving predictions of observed variables. The SDMU is therefore suited to DA studies where the observed variables are of primary interest. Its efficacy is demonstrated through a synthetic case study with low-dimensional chaotic dynamics and a real hydrologic experiment for one-day-ahead streamflow forecasting. In both experiments, the proposed method leads to substantial improvements in the hidden states and observed system outputs over a standard method involving perturbation with Gaussian noise. KW - data assimilation KW - model error KW - uncertainty quantification KW - particle filter KW - nonparametric statistics Y1 - 2018 U6 - https://doi.org/10.1002/2018WR022627 SN - 0043-1397 SN - 1944-7973 VL - 54 IS - 2 SP - 1252 EP - 1280 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Cervantes Villa, Juan Sebastian T1 - Understanding the dynamics of radiation belt electrons by means of data assimilation T1 - Verständnis der Dynamik von Strahlungsgürtel-Elektronen durch Datenassimilation N2 - The Earth's electron radiation belts exhibit a two-zone structure, with the outer belt being highly dynamic due to the constant competition between a number of physical processes, including acceleration, loss, and transport. The flux of electrons in the outer belt can vary over several orders of magnitude, reaching levels that may disrupt satellite operations. Therefore, understanding the mechanisms that drive these variations is of high interest to the scientific community. In particular, the important role played by loss mechanisms in controlling relativistic electron dynamics has become increasingly clear in recent years. It is now widely accepted that radiation belt electrons can be lost either by precipitation into the atmosphere or by transport across the magnetopause, called magnetopause shadowing. Precipitation of electrons occurs due to pitch-angle scattering by resonant interaction with various types of waves, including whistler mode chorus, plasmaspheric hiss, and electromagnetic ion cyclotron waves. In addition, the compression of the magnetopause due to increases in solar wind dynamic pressure can substantially deplete electrons at high L shells where they find themselves in open drift paths, whereas electrons at low L shells can be lost through outward radial diffusion. Nevertheless, the role played by each physical process during electron flux dropouts still remains a fundamental puzzle. Differentiation between these processes and quantification of their relative contributions to the evolution of radiation belt electrons requires high-resolution profiles of phase space density (PSD). However, such profiles of PSD are difficult to obtain due to restrictions of spacecraft observations to a single measurement in space and time, which is also compounded by the inaccuracy of instruments. Data assimilation techniques aim to blend incomplete and inaccurate spaceborne data with physics-based models in an optimal way. In the Earth's radiation belts, it is used to reconstruct the entire radial profile of electron PSD, and it has become an increasingly important tool in validating our current understanding of radiation belt dynamics, identifying new physical processes, and predicting the near-Earth hazardous radiation environment. In this study, sparse measurements from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 are assimilated into the three-dimensional Versatile Electron Radiation Belt (VERB-3D) diffusion model, by means of a split-operator Kalman filter over a four-year period from 01 October 2012 to 01 October 2016. In comparison to previous works, the 3D model accounts for more physical processes, namely mixed pitch angle-energy diffusion, scattering by EMIC waves, and magnetopause shadowing. It is shown how data assimilation, by means of the innovation vector (the residual between observations and model forecast), can be used to account for missing physics in the model. This method is used to identify the radial distances from the Earth and the geomagnetic conditions where the model is inconsistent with the measured PSD for different values of the adiabatic invariants mu and K. As a result, the Kalman filter adjusts the predictions in order to match the observations, and this is interpreted as evidence of where and when additional source or loss processes are active. Furthermore, two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons are investigated: EMIC wave-induced scattering and magnetopause shadowing. The innovation vector is inspected for values of the invariant mu ranging from 300 to 3000 MeV/G, and a statistical analysis is performed to quantitatively assess the effect of both processes as a function of various geomagnetic indices, solar wind parameters, and radial distance from the Earth. The results of this work are in agreement with previous studies that demonstrated the energy dependence of these two mechanisms. EMIC wave scattering dominates loss at lower L shells and it may amount to between 10%/hr to 30%/hr of the maximum value of PSD over all L shells for fixed first and second adiabatic invariants. On the other hand, magnetopause shadowing is found to deplete electrons across all energies, mostly at higher L shells, resulting in loss from 50%/hr to 70%/hr of the maximum PSD. Nevertheless, during times of enhanced geomagnetic activity, both processes can operate beyond such location and encompass the entire outer radiation belt. The results of this study are two-fold. Firstly, it demonstrates that the 3D data assimilative code provides a comprehensive picture of the radiation belts and is an important step toward performing reanalysis using observations from current and future missions. Secondly, it achieves a better understanding and provides critical clues of the dominant loss mechanisms responsible for the rapid dropouts of electrons at different locations over the outer radiation belt. N2 - Die Elektronenstrahlungsgürtel der Erde weisen eine Zwei-Zonen-Struktur auf, wobei der äußere Gürtel aufgrund des ständigen Zusammenspiels zwischen einer Reihe von physikalischen Prozessen, einschließlich Beschleunigung, Verlust und Transport, eine hohe Dynamik aufweist. Der Elektronenfluss im äußeren Gürtel kann über mehrere Größenordnungen variieren und Werte erreichen, die den Satellitenbetrieb stören können. Daher ist das Verständnis der Mechanismen, die diese Variabilität bewirken, von hohem Interesse für die wissenschaftliche Gemeinschaft. Insbesondere die wichtige Rolle die Verlustmechanismen bei der Kontrolle der relativistischen Elektronendynamik spielen ist in den letzten Jahren immer deutlicher geworden. Es ist inzwischen weithin anerkannt, dass Strahlungsgürtelelektronen entweder durch Interaktion mit der Atmosphäre oder durch Transport über die Magnetopause, das so genannte Magnetopauseshadowing, verloren gehen können. Der Verlust von Elektronen in der Atmosphäre erfolgt aufgrund von Pitchwinkelstreuung durch resonante Wechselwirkung mit verschiedenen Arten von magnetosphärischen Wellen, einschließlich plasmasphärischem Hiss, Whistler-Mode-Chorus, und elektromagnetischen Ionenzyklotron-Wellen (EMIC). Darüber hinaus kann die Komprimierung der Magnetopause aufgrund der Erhöhungen des dynamischen Drucks des Sonnenwindes dazu führen, dass Elektronen an hohen L-Shells, wo sie sich in offenen Driftpfaden befinden, erheblich in ihrer Dichte reduziert werden, während Elektronen an niedrigen L-Shells durch radiale Diffusion nach außen verloren gehen können. Nichtsdestotrotz bleibt die Rolle, die jeder physikalische Prozess bei der schnellen Reduktion des Elektronenflusses spielt, nach wie vor ein grundlegendes Rätsel. Die Unterscheidung zwischen diesen Prozessen und die Quantifizierung ihrer relativen Beiträge zur Entwicklung der Strahlungsgürtelelektronen erfordert hochauflösende Profile der Phasenraumdichte (PSD). Solche Profile der PSD sind jedoch schwierig zu bestimmen, da die Beobachtungen von Raumfahrzeugen auf eine einzige Messung in Raum und Zeit beschränkt sind, was auch durch die Ungenauigkeit der Instrumente erschwert wird. Datenassimilationstechniken zielen darauf ab, unvollständige und ungenaue raumgestützte Daten mit physikalisch basierten Modellen auf optimale Weise zu kombinieren. In den Strahlungsgürteln der Erde werden sie verwendet, um das gesamte radiale Profil der Elektronen-PSD zu rekonstruieren, und sie sind zu einem immer wichtigeren Werkzeug geworden, um unser derzeitiges Verständnis der Dynamik der Strahlungsgürtel zu validieren, neue physikalische Prozesse zu identifizieren und die erdnahe gefährliche Strahlungsumgebung vorherzusagen. In dieser Studie werden Messungen der Van-Allen-Probes A und B und der Geostationary-Operational-Environmental-Satellites (GOES) 13 und 15 mit Hilfe eines Split-Operator-Kalman-Filters über einen Zeitraum von vier Jahren vom 01. Oktober 2012 bis zum 01. Oktober 2016 in das dreidimensionale Versatile Electron Radiation Belt-3D-Diffusionsmodell (VERB-3D) integriert. Im Vergleich zu früheren Arbeiten berücksichtigt das 3D-Modell mehr physikalische Prozesse, nämlich gemischte Diffusion, Streuung durch EMIC-Wellen und Magnetopausenverluste. Es wird gezeigt, wie die Datenassimilation mit Hilfe des Innovationsvektors (des Residuums zwischen Beobachtungen und Modellprognose), genutzt werden kann, um fehlende physikalische Prozesse im Modell zu berücksichtigen. Diese Methode wird verwendet, um die radialen Entfernungen von der Erde und die geomagnetischen Bedingungen zu identifizieren, bei denen unser Modell für verschiedene Werte der adiabatischen Invarianten mu und K nicht mit der gemessenen PSD übereinstimmt. Infolgedessen passt der Kalman-Filter die Vorhersagen an die Beobachtungen an, und dies wird als Nachweis dafür interpretiert, wo und wann zusätzliche Quellen- oder Verlustprozesse aktiv sind. Darüber hinaus werden zwei unterschiedliche Verlustmechanismen untersucht, die für die schnellen Verluste von Strahlungsgürtelelektronen verantwortlich sind: EMIC-Wellen-induzierte Streuung und Magnetopausenverluste. Der Innovationsvektor wird bei Werten der Invariante mu im Bereich von 300 bis 3000 MeV/G untersucht, und es wird eine statistische Analyse durchgeführt, um die Wirkung beider Prozesse in Abhängigkeit von verschiedenen geomagnetischen Indizes, Sonnenwindparametern und der radialen Entfernung von der Erde quantitativ zu bewerten. Die Ergebnisse dieser Arbeit stehen in Übereinstimmung mit früheren Studien, die die Energieabhängigkeit dieser beiden Mechanismen nachgewiesen haben. Die EMIC-Wellenstreuung dominiert den Verlust bei niedrigen L-Shells und kann zwi-schen 10%/hr bis 30%/hr des Maximalwertes der PSD über alle L-Shells für feste Werte der ersten und zweiten adiabatische Invarianten betragen. Andererseits wird festgestellt, dass bei den Magnetopausenverlusten über alle Energien hinweg, meist bei höheren L-Shells, Elektronen Verluste zeigen, was zu einer Verstärkung des Verlustes von 50%/hr auf 70%/hr der maximalen PSD führt. Nichtsdestotrotz können beide Prozesse in Zeiten erhöhter geomagnetischer Aktivität über diese L-Shells hinaus wirken und den gesamten äußeren Strahlungsgürtel umfassen. Die Ergebnisse dieser Studie sind zweifacher Art. Erstens zeigt sie, dass der 3D-Daten-Assimilationscode ein umfassendes Bild der Strahlungsgürtel liefert und ein wichtiger Schritt zur Durchführung einer Reanalyse unter Verwendung von Beobachtungen aus aktuellen und zukünftigen Missionen ist. Zweitens erreicht er ein besseres Verständnis und liefert entscheidende Hinweise auf die vorherrschenden Verlustmechanismen, die für die schnellen Verluste von Elektronen an verschiedenen Orten im äußeren Strahlungsgürtel verantwortlich sind. KW - radiation belts KW - Strahlungsgürtel KW - data assimilation KW - Datenassimilation KW - phase space density KW - Phasenraumdichte KW - magnetospheric waves KW - magnetosphärischen Wellen KW - Kalman filter KW - Kalman-Filter Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-519827 ER -