TY - JOUR A1 - Zapata, Sebastian A1 - Sobel, Edward A1 - Del Papa, Cecilia A1 - Glodny, Johannes T1 - Upper Plate Controls on the Formation of Broken Foreland Basins in the Andean Retroarc Between 26°S and 28°S BT - From Cretaceous Rifting to Paleogene and Miocene Broken Foreland Basins JF - Geochemistry, Geophysics, Geosystems N2 - Marked along-strike changes in stratigraphy, mountain belt morphology, basement exhumation, and deformation styles characterize the Andean retroarc; these changes have previously been related to spatiotemporal variations in the subduction angle. We modeled new apatite fission track and apatite (U-Th-Sm)/He data from nine ranges located between 26 degrees S and 28 degrees S. Using new and previously published data, we constructed a Cretaceous to Pliocene paleogeographic model that delineates a four-stage tectonic evolution: extensional tectonics during the Cretaceous (120-75 Ma), the formation of a broken foreland basin between 55 and 30 Ma, reheating due to burial beneath sedimentary rocks (18-13 Ma), and deformation, exhumation, and surface uplift during the Late Miocene and the Pliocene (13-3 Ma). Our model highlights how preexisting upper plate structures control the deformation patterns of broken foreland basins. Because retroarc deformation predates flat-slab subduction, we propose that slab anchoring may have been the precursor of Eocene-Oligocene compression in the Andean retroarc. Our model challenges models which consider broken foreland basins and retroarc deformation in the NW Argentinian Andes to be directly related to Miocene flat subduction. KW - Northern Sierras Pampeanas KW - Fission-track thermochronology KW - Middle Eocene deformation KW - Santa-Barbara system KW - flat-slab subduction KW - tectonic inversion KW - Apatite (U-TH)/HE KW - Puna Plateau KW - radiation-damage KW - length measurements Y1 - 2019 VL - 21 IS - 7 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - GEN A1 - Zapata, Sebastian A1 - Sobel, Edward A1 - Del Papa, Cecilia A1 - Glodny, Johannes T1 - Upper Plate Controls on the Formation of Broken Foreland Basins in the Andean Retroarc Between 26°S and 28°S BT - From Cretaceous Rifting to Paleogene and Miocene Broken Foreland Basins T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Marked along-strike changes in stratigraphy, mountain belt morphology, basement exhumation, and deformation styles characterize the Andean retroarc; these changes have previously been related to spatiotemporal variations in the subduction angle. We modeled new apatite fission track and apatite (U-Th-Sm)/He data from nine ranges located between 26 degrees S and 28 degrees S. Using new and previously published data, we constructed a Cretaceous to Pliocene paleogeographic model that delineates a four-stage tectonic evolution: extensional tectonics during the Cretaceous (120-75 Ma), the formation of a broken foreland basin between 55 and 30 Ma, reheating due to burial beneath sedimentary rocks (18-13 Ma), and deformation, exhumation, and surface uplift during the Late Miocene and the Pliocene (13-3 Ma). Our model highlights how preexisting upper plate structures control the deformation patterns of broken foreland basins. Because retroarc deformation predates flat-slab subduction, we propose that slab anchoring may have been the precursor of Eocene-Oligocene compression in the Andean retroarc. Our model challenges models which consider broken foreland basins and retroarc deformation in the NW Argentinian Andes to be directly related to Miocene flat subduction. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1215 KW - Northern Sierras Pampeanas KW - Fission-track thermochronology KW - Middle Eocene deformation KW - Santa-Barbara system KW - flat-slab subduction KW - tectonic inversion KW - Apatite (U-TH)/HE KW - Puna Plateau KW - radiation-damage KW - length measurements Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523823 SN - 1866-8372 IS - 7 ER -