TY - JOUR A1 - Ferrer, Beatriz A1 - Peres, Tanara Vieira A1 - dos Santos, Alessandra Antunes A1 - Bornhorst, Julia A1 - Morcillo, Patricia A1 - Goncalves, Cinara Ludvig A1 - Aschner, Michael T1 - Methylmercury affects the expression of hypothalamic neuropeptides that control body weight in C57BL/6J mice JF - Toxicological sciences N2 - Methylmercury (MeHg) is an environmental pollutant that affects primarily the central nervous system (CNS), causing neurological alterations. An early symptom of MeHg poisoning is the loss of body weight and appetite. Moreover, the CNS has an important role in controlling energy homeostasis. It is known that in the hypothalamus nutrient and hormonal signals converge to orchestrate control of body weight and food intake. In this study, we investigated if MeHg is able to induce changes in the expression of key hypothalamic neuropeptides that regulate energy homeostasis. Thus, hypothalamic neuronal mouse cell line GT 1-7 was treated with MeHg at different concentrations (0, 0.5, 1, and 5 mu M). MeHg induced the expression of the anorexigenic neuropeptide pro-omiomelanocortin (Pomc) and the orexigenic peptide Agouti-related peptide (Agrp) in a concentration-dependent manner, suggesting deregulation of mechanisms that control body weight. To confirm these in vitro observations, 8-week-old C57BL/6J mice (males and females) were exposed to MeHg in drinking water, modeling the most prevalent exposure route to this metal. After 30-day exposure, no changes in body weight were detected. However, MeHg treated males showed a significant decrease in fat depots. Moreover, MeHg affected the expression of hypothalamic neuropeptides that control food intake and body weight in a gender-and dose-dependent manner. Thus, MeHg increases Pomc mRNA only in males in a dose-dependent way, and it does not have effects on the expression of Agrp mRNA. The present study shows, for first time, that MeHg is able to induce changes in hypothalamic neuropeptides that regulate energy homeostasis, favoring an anorexigenic/catabolic profile. KW - methylmercury KW - hypothalamus KW - neuropeptides KW - control body weight KW - glucose homeostasis Y1 - 2018 U6 - https://doi.org/10.1093/toxsci/kfy052 SN - 1096-6080 SN - 1096-0929 VL - 163 IS - 2 SP - 557 EP - 568 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Lohren, Hanna A1 - Bornhorst, Julia A1 - Fitkau, Romy A1 - Pohl, Gabriele A1 - Galla, Hans-Joachim A1 - Schwerdtle, Tanja T1 - Effects on and transfer across the blood-brain barrier in vitro BT - Comparison of organic and inorganic mercury species N2 - Background: Transport of methylmercury (MeHg) across the blood-brain barrier towards the brain side is well discussed in literature, while ethylmercury (EtHg) and inorganic mercury are not adequately characterized regarding their entry into the brain. Studies investigating a possible efflux out of the brain are not described to our knowledge. Methods: This study compares, for the first time, effects of organic methylmercury chloride (MeHgCl), EtHg-containing thiomersal and inorganic Hg chloride (HgCl2) on as well as their transfer across a primary porcine in vitro model of the blood-brain barrier. Results: With respect to the barrier integrity, the barrier model exhibited a much higher sensitivity towards HgCl2 following basolateral incubation (brain-facing side) as compared to apical application (blood-facing side). These HgCl2 induced effects on the barrier integrity after brain side incubation are comparable to that of the organic species, although MeHgCl and thiomersal exerted much higher cytotoxic effects in the barrier building cells. Hg transfer rates following exposure to organic species in both directions argue for diffusion as transfer mechanism. Inorganic Hg application surprisingly resulted in a Hg transfer out of the brain-facing compartment. Conclusions: In case of MeHgCl and thiomersal incubation, mercury crossed the barrier in both directions, with a slight accumulation in the basolateral, brain-facing compartment, after simultaneous incubation in both compartments. For HgCl2, our data provide first evidence that the blood-brain barrier transfers mercury out of the brain. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 406 KW - organic mercury KW - inorganic mercury KW - methylmercury KW - thiomersal KW - mercuric mercury KW - in vitro blood-brain barrier model Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401776 ER - TY - JOUR A1 - Pieper, Imke A1 - Wehe, Christoph A. A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Leffers, Larissa A1 - Holtkamp, Michael A1 - Höseler, Pia A1 - Weber, Till A1 - Mangerich, Aswin A1 - Bürkle, Alexander A1 - Karst, Uwe A1 - Schwerdtle, Tanja T1 - Mechanisms of Hg species induced toxicity in cultured human astrocytes BT - genotoxicity and DNA-damage response JF - Metallomics N2 - The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co-genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl)ation contributes to organic Hg induced neurotoxicity. KW - cell-death KW - poly(ADP-ribose) polymerase-1 KW - neurodegenerative diseases KW - adduct formation KW - thimerosal KW - methylmercury KW - repair KW - neurotoxicity KW - manganese KW - exposure Y1 - 2014 U6 - https://doi.org/10.1039/c3mt00337j SN - 1756-591X SN - 1756-5901 VL - 2014 IS - 6 SP - 662 EP - 671 ER - TY - GEN A1 - Pieper, Imke A1 - Wehe, Christoph A. A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Leffers, Larissa A1 - Holtkamp, Michael A1 - Höseler, Pia A1 - Weber, Till A1 - Mangerich, Aswin A1 - Bürkle, Alexander A1 - Karst, Uwe A1 - Schwerdtle, Tanja T1 - Mechanisms of Hg species induced toxicity in cultured human astrocytes BT - genotoxicity and DNA-damage response N2 - The toxicologically most relevant mercury (Hg) species for human exposure is methylmercury (MeHg). Thiomersal is a common preservative used in some vaccine formulations. The aim of this study is to get further mechanistic insight into the yet not fully understood neurotoxic modes of action of organic Hg species. Mercury species investigated include MeHgCl and thiomersal. Additionally HgCl2 was studied, since in the brain mercuric Hg can be formed by dealkylation of the organic species. As a cellular system astrocytes were used. In vivo astrocytes provide the environment necessary for neuronal function. In the present study, cytotoxic effects of the respective mercuricals increased with rising alkylation level and correlated with their cellular bioavailability. Further experiments revealed for all species at subcytotoxic concentrations no induction of DNA strand breaks, whereas all species massively increased H2O2-induced DNA strand breaks. This co- genotoxic effect is likely due to a disturbance of the cellular DNA damage response. Thus, at nanomolar, sub-cytotoxic concentrations, all three mercury species strongly disturbed poly(ADP-ribosyl)ation, a signalling reaction induced by DNA strand breaks. Interestingly, the molecular mechanism behind this inhibition seems to be different for the species. Since chronic PARP-1 inhibition is also discussed to sacrifice neurogenesis and learning abilities, further experiments on neurons and in vivo studies could be helpful to clarify whether the inhibition of poly(ADP-ribosyl) ation contributes to organic Hg induced neurotoxicity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 171 KW - adduct formation KW - cell-death KW - exposure KW - manganese KW - methylmercury KW - neurodegenerative diseases KW - neurotoxicity KW - poly(ADP-ribose) polymerase-1 KW - repair KW - thimerosal Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74379 SP - 662 EP - 671 ER -