TY - JOUR A1 - Vaidya, Shrijana A1 - Schmidt, Marten A1 - Rakowski, Peter A1 - Bonk, Norbert A1 - Verch, Gernot A1 - Augustin, Jürgen A1 - Sommer, Michael A1 - Hoffmann, Mathias T1 - A novel robotic chamber system allowing to accurately and precisely determining spatio-temporal CO2 flux dynamics of heterogeneous croplands JF - Agricultural and forest meteorology N2 - The precise and accurate assessment of carbon dioxide (CO2) exchange is crucial to identify terrestrial carbon (C) sources and sinks and for evaluating their role within the global C budget. The substantial uncertainty in disentangling the management and soil impact on measured CO2 fluxes are largely ignored especially in cropland. The reasons for this lies in the limitation of the widely used eddy covariance as well as manual and automatic chamber systems, which either account for short-term temporal variability or small-scale spatial heterogeneity, but barely both. To address this issue, we developed a novel robotic chamber system allowing for dozens of spatial measurement repetitions, thus enabling CO2 exchange measurements in a sufficient temporal and high small-scale spatial resolution. The system was tested from 08th July to 09th September 2019 at a heterogeneous field (100 m x 16 m), located within the hummocky ground moraine landscape of northeastern Germany (CarboZALF-D). The field is foreseen for a longer-term block trial manipulation experiment extending over three erosion induced soil types and was covered with spring barley. Measured fluxes of nighttime ecosystem respiration (R-eco) and daytime net ecosystem exchange (NEE) showed distinct temporal patterns influenced by crop phenology, weather conditions and management practices. Similarly, we found clear small-scale spatial differences in cumulated (gap-filled) R-eco, gross primary productivity (GPP) and NEE fluxes affected by the three distinct soil types. Additionally, spatial patterns induced by former management practices and characterized by differences in soil pH and nutrition status (P and K) were also revealed between plots within each of the three soil types, which allowed compensating for prior to the foreseen block trial manipulation experiment. The results underline the great potential of the novel robotic chamber system, which not only detects short-term temporal CO2 flux dynamics but also reflects the impact of small-scale spatial heterogeneity. KW - Automatic chamber KW - Net ecosystem exchange (NEE) KW - Gross primary KW - productivity (GPP) KW - Ecosystem respiration (R-eco) KW - Soil erosion KW - Soil KW - heterogeneity Y1 - 2021 U6 - https://doi.org/10.1016/j.agrformet.2020.108206 SN - 0168-1923 SN - 1873-2240 VL - 296 PB - Elsevier CY - Amsterdam ER -