TY - GEN A1 - Puppe, Daniel A1 - Wanner, Manfred A1 - Sommer, Michael T1 - Data on euglyphid testate amoeba densities, corresponding protozoic silicon pools, and selected soil parameters of initial and forested biogeosystems T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The dataset in the present article provides information on protozoic silicon (Si) pools represented by euglyphid testate amoebae (TA) in soils of initial and forested biogeosystems. Protozoic Si pools were calculated from densities of euglyphid TA shells and corresponding Si contents. The article also includes data on potential annual biosilicification rates of euglyphid TA at the examined sites. Furthermore, data on selected soil parameters (e.g., readily-available Si, soil pH) and site characteristics (e.g., soil groups, climate data) can be found. The data might be interesting for researchers focusing on biological processes in Si cycling in general and euglyphid TA and corresponding protozoic Si pools in particular. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1039 KW - silicon cycling KW - biogenic silica KW - terrestrial biogeosystems KW - biosilicification KW - Euglyphida Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471160 SN - 1866-8372 IS - 1039 ER - TY - JOUR A1 - Puppe, Daniel A1 - Wanner, Manfred A1 - Sommer, Michael T1 - Data on euglyphid testate amoeba densities, corresponding protozoic silicon pools, and selected soil parameters of initial and forested biogeosystems JF - Data in brief N2 - The dataset in the present article provides information on protozoic silicon (Si) pools represented by euglyphid testate amoebae (TA) in soils of initial and forested biogeosystems. Protozoic Si pools were calculated from densities of euglyphid TA shells and corresponding Si contents. The article also includes data on potential annual biosilicification rates of euglyphid TA at the examined sites. Furthermore, data on selected soil parameters (e.g., readily-available Si, soil pH) and site characteristics (e.g., soil groups, climate data) can be found. The data might be interesting for researchers focusing on biological processes in Si cycling in general and euglyphid TA and corresponding protozoic Si pools in particular. KW - Silicon cycling KW - Biogenic silica KW - Terrestrial biogeosystems KW - Biosilicification KW - Euglyphida Y1 - 2018 U6 - https://doi.org/10.1016/j.dib.2018.10.164 SN - 2352-3409 VL - 21 SP - 1697 EP - 1703 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wanner, Manfred A1 - Seidl-Lampa, Barbara A1 - Höhn, Axel A1 - Puppe, Daniel A1 - Meisterfeld, Ralf A1 - Sommer, Michael T1 - Culture growth of testate amoebae under different silicon concentrations JF - European journal of protistology N2 - Testate amoebae with self-secreted siliceous shell platelets ("idiosomes") play an important role in terrestrial silicon (Si) cycles. In this context, Si-dependent culture growth dynamics of idiosomic testate amoebae are of interest. Clonal cultures of idiosomic testate amoebae were analyzed under three different Si concentrations: low (50 mu mol L-1), moderate/site-specific (150 mu mol L-1) and high Si supply (500 mu mol L-1). Food (Saccharomyces cerevisiae) was provided in surplus. (i) Shell size of four different clones of idiosomic testate amoebae either decreased (Trinema galeata, Euglypha filifera cf.), increased (E. rotunda cf.), or did not change (E. rotunda) under the lowest Si concentration (50 mu mol Si L-1). (ii) Culture growth of idiosomic Euglypha rotunda was dependent on Si concentration. The more Si available in the culture medium, the earlier the entry into exponential growth phase. (iii) Culture growth of idiosomic Euglypha rotunda was dependent on origin of inoculum. Amoebae previously cultured under a moderate Si concentration revealed highest sustainability in consecutive cultures. Amoebae derived from cultures with high Si concentrations showed rapid culture growth which finished early in consecutive cultures. (iv) Si (diluted in the culture medium) was absorbed by amoebae and fixed in the amoeba shells resulting in decreased Si concentrations. (C) 2016 Elsevier GmbH. All rights reserved. KW - Amoebal silicon KW - Sommer et al. 2006 KW - Biosilicification KW - Consumption KW - Culture growth dynamics KW - Euglyphida KW - Terrestrial Si cycle Y1 - 2016 U6 - https://doi.org/10.1016/j.ejop.2016.08.008 SN - 0932-4739 SN - 1618-0429 VL - 56 SP - 171 EP - 179 PB - Royal Society of Chemistry CY - Jena ER -