TY - JOUR A1 - Hocher, Berthold A1 - Haumann, Hannah A1 - Rahnenführer, Jan A1 - Reichetzeder, Christoph A1 - Kalk, Philipp A1 - Pfab, Thiemo A1 - Tsuprykov, Oleg A1 - Winter, Stefan A1 - Hofmann, Ute A1 - Li, Jian A1 - Püschel, Gerhard Paul A1 - Lang, Florian A1 - Schuppan, Detlef A1 - Schwab, Matthias A1 - Schaeffeler, Elke T1 - Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner JF - Epigenetics : the official journal of the DNA Methylation Society N2 - Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offspring's phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood. KW - Epigenetics KW - eNOS KW - Fetal programming KW - fatty liver KW - metabolism Y1 - 2016 U6 - https://doi.org/10.1080/15592294.2016.1184800 SN - 1559-2294 SN - 1559-2308 VL - 11 SP - 539 EP - 552 PB - Routledge, Taylor & Francis Group CY - Philadelphia ER - TY - JOUR A1 - Hocher, Berthold A1 - Lu, Yong-Ping A1 - Reichetzeder, Christoph A1 - Zhang, Xiaoli A1 - Tsuprykov, Oleg A1 - Rahnenführer, Jan A1 - Xie, Li A1 - Li, Jian A1 - Hu, Liang A1 - Krämer, Bernhard K. A1 - Hasan, Ahmed A. T1 - Paternal eNOS deficiency in mice affects glucose homeostasis and liver glycogen in male offspring without inheritance of eNOS deficiency itself JF - Diabetologia N2 - Aims/hypothesis It was shown that maternal endothelial nitric oxide synthase (eNOS) deficiency causes fatty liver disease and numerically lower fasting glucose in female wild-type offspring, suggesting that parental genetic variants may influence the offspring's phenotype via epigenetic modifications in the offspring despite the absence of a primary genetic defect. The aim of the current study was to analyse whether paternal eNOS deficiency may cause the same phenotype as seen with maternal eNOS deficiency. Methods Heterozygous (+/-) male eNOS (Nos3) knockout mice or wild-type male mice were bred with female wild-type mice. The phenotype of wild-type offspring of heterozygous male eNOS knockout mice was compared with offspring from wild-type parents. Results Global sperm DNA methylation decreased and sperm microRNA pattern altered substantially. Fasting glucose and liver glycogen storage were increased when analysing wild-type male and female offspring of +/- eNOS fathers. Wild-type male but not female offspring of +/- eNOS fathers had increased fasting insulin and increased insulin after glucose load. Analysing candidate genes for liver fat and carbohydrate metabolism revealed that the expression of genes encoding glucocorticoid receptor (Gr; also known as Nr3c1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1a; also known as Ppargc1a) was increased while DNA methylation of Gr exon 1A and Pgc1a promoter was decreased in the liver of male wild-type offspring of +/- eNOS fathers. The endocrine pancreas in wild-type offspring was not affected.
Conclusions/interpretation Our study suggests that paternal genetic defects such as eNOS deficiency may alter the epigenome of the sperm without transmission of the paternal genetic defect itself. In later life wild-type male offspring of +/- eNOS fathers developed increased fasting insulin and increased insulin after glucose load. These effects are associated with increased Gr and Pgc1a gene expression due to altered methylation of these genes. KW - eNOS KW - Glucocorticoid receptor KW - Insulin resistance KW - Paternal programming; KW - PGC1a Y1 - 2022 U6 - https://doi.org/10.1007/s00125-022-05700-x SN - 0012-186X SN - 1432-0428 VL - 65 IS - 7 SP - 1222 EP - 1236 PB - Springer CY - New York ER -