TY - GEN A1 - Omidbakhshfard, Mohammad Amin A1 - Neerakkal, Sujeeth A1 - Gupta, Saurabh A1 - Omranian, Nooshin A1 - Guinan, Kieran J. A1 - Brotman, Yariv A1 - Nikoloski, Zoran A1 - Fernie, Alisdair R. A1 - Mueller-Roeber, Bernd A1 - Gechev, Tsanko S. T1 - A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ. Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment. These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic, and lipid levels. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 823 KW - Ascophyllum nodosum KW - Arabidopsis thaliana KW - biostimulant KW - paraquat KW - priming KW - oxidative stress tolerance KW - reactive oxygen species Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445093 SN - 1866-8372 IS - 823 ER - TY - JOUR A1 - Omidbakhshfard, Mohammad Amin A1 - Neerakkal, Sujeeth A1 - Gupta, Saurabh A1 - Omranian, Nooshin A1 - Guinan, Kieran J. A1 - Brotman, Yariv A1 - Nikoloski, Zoran A1 - Fernie, Alisdair R. A1 - Mueller-Roeber, Bernd A1 - Gechev, Tsanko S. T1 - A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress JF - International Journal of Molecular Sciences N2 - Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ. Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment. These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic, and lipid levels. KW - Ascophyllum nodosum KW - Arabidopsis thaliana KW - biostimulant KW - paraquat KW - priming KW - oxidative stress tolerance KW - reactive oxygen species Y1 - 2019 U6 - https://doi.org/10.3390/ijms21020474 SN - 1422-0067 VL - 21 IS - 2 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Lämke, Jörn A1 - Brzezinka, Krzysztof A1 - Altmann, Simone A1 - Bäurle, Isabel T1 - A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory JF - The EMBO journal N2 - In nature, plants often encounter chronic or recurring stressful conditions. Recent results indicate that plants can remember a past exposure to stress to be better prepared for a future stress incident. However, the molecular basis of this is poorly understood. Here, we report the involvement of chromatin modifications in the maintenance of acquired thermotolerance (heat stress [HS] memory). HS memory is associated with the accumulation of histone H3 lysine 4 di- and trimethylation at memory-related loci. This accumulation outlasts their transcriptional activity and marks them as recently transcriptionally active. High accumulation of H3K4 methylation is associated with hyper-induction of gene expression upon a recurring HS. This transcriptional memory and the sustained accumulation of H3K4 methylation depend on HSFA2, a transcription factor that is required for HS memory, but not initial heat responses. Interestingly, HSFA2 associates with memory-related loci transiently during the early stages following HS. In summary, we show that transcriptional memory after HS is associated with sustained H3K4 hyper-methylation and depends on a hit-and-run transcription factor, thus providing a molecular framework for HS memory. KW - chromatin KW - H3K4 methylation KW - heat shock transcription factor KW - priming KW - transcriptional memory Y1 - 2016 U6 - https://doi.org/10.15252/embj.201592593 SN - 0261-4189 SN - 1460-2075 VL - 35 SP - 162 EP - 175 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Sedaghatmehr, Mastoureh A1 - Thirumalaikumar, Venkatesh P. A1 - Kamranfar, Iman A1 - Marmagne, Anne A1 - Masclaux-Daubresse, Celine A1 - Balazadeh, Salma T1 - A regulatory role of autophagy for resetting the memory of heat stress in plants JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - As sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self-degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation of protein aggregates after the second HS and a compromised heat tolerance. Autophagy mutants retain heat shock proteins longer than wild type and concomitantly display improved thermomemory. Our findings reveal a novel regulatory mechanism for HS memory in plants. KW - Arabidopsis KW - heat shock proteins KW - priming KW - resetting Y1 - 2019 U6 - https://doi.org/10.1111/pce.13426 SN - 0140-7791 SN - 1365-3040 VL - 42 IS - 3 SP - 1054 EP - 1064 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Bäurle, Isabel A1 - Brzezinka, Krzysztof A1 - Altmann, Simone T1 - BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory JF - Plant Cell & Environment N2 - Plants encounter biotic and abiotic stresses many times during their life cycle and this limits their productivity. Moderate heat stress (HS) primes a plant to survive higher temperatures that are lethal in the naïve state. Once temperature stress subsides, the memory of the priming event is actively retained for several days preparing the plant to better cope with recurring HS. Recently, chromatin regulation at different levels has been implicated in HS memory. Here, we report that the chromatin protein BRUSHY1 (BRU1)/TONSOKU/MGOUN3 plays a role in the HS memory in Arabidopsis thaliana. BRU1 is also involved in transcriptional gene silencing and DNA damage repair. This corresponds with the functions of its mammalian orthologue TONSOKU‐LIKE/NFΚBIL2. During HS memory, BRU1 is required to maintain sustained induction of HS memory‐associated genes, whereas it is dispensable for the acquisition of thermotolerance. In summary, we report that BRU1 is required for HS memory in A. thaliana, and propose a model where BRU1 mediates the epigenetic inheritance of chromatin states across DNA replication and cell division. KW - Arabidopsis thaliana KW - BRUSHY1 KW - chromatin KW - priming Y1 - 2019 U6 - https://doi.org/10.1111/pce.13365 VL - 42 SP - 771 EP - 781 ER - TY - GEN A1 - Brzezinka, Krzysztof A1 - Altmann, Simone A1 - Bäurle, Isabel T1 - BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Plants encounter biotic and abiotic stresses many times during their life cycle and this limits their productivity. Moderate heat stress (HS) primes a plant to survive higher temperatures that are lethal in the naive state. Once temperature stress subsides, the memory of the priming event is actively retained for several days preparing the plant to better cope with recurring HS. Recently, chromatin regulation at different levels has been implicated in HS memory. Here, we report that the chromatin protein BRUSHY1 (BRU1)/TONSOKU/MGOUN3 plays a role in the HS memory in Arabidopsis thaliana. BRU1 is also involved in transcriptional gene silencing and DNA damage repair. This corresponds with the functions of its mammalian orthologue TONSOKU-LIKE/NF Kappa BIL2. During HS memory, BRU1 is required to maintain sustained induction of HS memory-associated genes, whereas it is dispensable for the acquisition of thermotolerance. In summary, we report that BRU1 is required for HS memory in A. thaliana, and propose a model where BRU1 mediates the epigenetic inheritance of chromatin states across DNA replication and cell division. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 788 KW - Arabidopsis thaliana KW - BRU1 KW - chromatin KW - priming Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436219 SN - 1866-8372 IS - 788 ER - TY - JOUR A1 - Bäurle, Isabel A1 - Trindade, Inês T1 - Chromatin regulation of somatic abiotic stress memory JF - Journal of experimental botany N2 - In nature, plants are often subjected to periods of recurrent environmental stress that can strongly affect their development and productivity. To cope with these conditions, plants can remember a previous stress, which allows them to respond more efficiently to a subsequent stress, a phenomenon known as priming. This ability can be maintained at the somatic level for a few days or weeks after the stress is perceived, suggesting that plants can store information of a past stress during this recovery phase. While the immediate responses to a single stress event have been extensively studied, knowledge on priming effects and how stress memory is stored is still scarce. At the molecular level, memory of a past condition often involves changes in chromatin structure and organization, which may be maintained independently from transcription. In this review, we will summarize the most recent developments in the field and discuss how different levels of chromatin regulation contribute to priming and plant abiotic stress memory. KW - abiotic stress KW - chromatin regulation KW - heat stress memory KW - histone KW - modifications KW - priming KW - transcriptional memory KW - vernalization Y1 - 2020 U6 - https://doi.org/10.1093/jxb/eraa098 SN - 0022-0957 SN - 1460-2431 VL - 71 IS - 17 SP - 5269 EP - 5279 PB - Oxford Univiversity Press CY - Oxford ER - TY - JOUR A1 - Friedrich, Thomas A1 - Faivre, Lea A1 - Bäurle, Isabel A1 - Schubert, Daniel T1 - Chromatin-based mechanisms of temperature memory in plants JF - Plant, cell & environment : cell physiology, whole-plant physiology, community physiology N2 - For successful growth and development, plants constantly have to gauge their environment. Plants are capable to monitor their current environmental conditions, and they are also able to integrate environmental conditions over time and store the information induced by the cues. In a developmental context, such an environmental memory is used to align developmental transitions with favourable environmental conditions. One temperature-related example of this is the transition to flowering after experiencing winter conditions, that is, vernalization. In the context of adaptation to stress, such an environmental memory is used to improve stress adaptation even when the stress cues are intermittent. A somatic stress memory has now been described for various stresses, including extreme temperatures, drought, and pathogen infection. At the molecular level, such a memory of the environment is often mediated by epigenetic and chromatin modifications. Histone modifications in particular play an important role. In this review, we will discuss and compare different types of temperature memory and the histone modifications, as well as the reader, writer, and eraser proteins involved. KW - chromatin KW - cold KW - epigenetics KW - heat KW - memory KW - nucleosome remodelling KW - polycomb KW - priming KW - trithorax Y1 - 2018 U6 - https://doi.org/10.1111/pce.13373 SN - 0140-7791 SN - 1365-3040 VL - 42 IS - 3 SP - 762 EP - 770 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Allu, Annapurna Devi A1 - Simancas, Barbara A1 - Balazadeh, Salma A1 - Munne-Bosch, Sergi T1 - Defense-Related Transcriptional Reprogramming in Vitamin E-Deficient Arabidopsis Mutants Exposed to Contrasting Phosphate Availability JF - Frontiers in plant science N2 - Vitamin E inhibits the propagation of lipid peroxidation and helps protecting photosystem II from photoinhibition, but little is known about its possible role in plant response to Pi availability. Here, we aimed at examining the effect of vitamin E deficiency in Arabidopsis thaliana vte mutants on phytohormone contents and the expression of transcription factors in plants exposed to contrasting Pi availability. Plants were subjected to two doses of Pi, either unprimed (controls) or previously exposed to low Pi (primed). In the wild type, alpha-tocopherol contents increased significantly in response to repeated periods of low Pi, which was paralleled by increased growth, indicative of a priming effect. This growth-stimulating effect was, however, abolished in vte mutants. Hormonal profiling revealed significant effects of Pi availability, priming and genotype on the contents of jasmonates and salicylates; remarkably, vte mutants showed enhanced accumulation of both hormones under low Pi. Furthermore, expression profiling of 1,880 transcription factors by qRT-PCR revealed a pronounced effect of priming on the transcript levels of 45 transcription factors mainly associated with growth and stress in wild-type plants in response to low Pi availability; while distinct differences in the transcriptional response were detected in vte mutants. We conclude that alpha-tocopherol plays a major role in the response of plants to Pi availability not only by protecting plants from photo-oxidative stress, but also by exerting a control over growth-and defense-related transcriptional reprogramming and hormonal modulation. KW - antioxidants KW - photosystem II KW - plastochromanol-8 KW - priming KW - retrograde signaling KW - tocochromanols KW - vitamin E Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.01396 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Liu, Hsiang-chin A1 - Lämke, Jörn A1 - Lin, Siou-ying A1 - Hung, Meng-Ju A1 - Liu, Kuan-Ming A1 - Charng, Yee-yung A1 - Bäurle, Isabel T1 - Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress JF - The plant journal N2 - Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms of this are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least 3 days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes of the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated during this time with histone H3 lysine 4 hypermethylation. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants. KW - epigenetics KW - priming KW - heat stress KW - H3K4 methylation KW - transcriptional memory KW - Arabidopsis thaliana KW - HSF Y1 - 2018 U6 - https://doi.org/10.1111/tpj.13958 SN - 0960-7412 SN - 1365-313X VL - 95 IS - 3 SP - 401 EP - 413 PB - Wiley CY - Hoboken ER -