TY - THES A1 - Ilic, Ivan T1 - Design of sustainable cathodes for Li-ion batteries T1 - Design nachhaltiger Kathoden für Li-Ionen-Batterien BT - understanding the redox behaviour of guaiacyl and catecholic groups in lithium organic system N2 - In recent years people have realised non-renewability of our modern society which relays on spending huge amounts of energy mostly produced from fosil fuels, such as oil and coal, and the shift towards more sustainable energy sources has started. However, sustainable sources of energy, such as wind-, solar- and hydro-energy, produce primarily electrical energy and can not just be poured in canister like many fosil fuels, creating necessity for rechragable batteries. However, modern Li-ion batteries are made from toxic heavy metals and sustainable alternatives are needed. Here we show that naturally abundant catecholic and guaiacyl groups can be utilised to replace heavy metals in Li-ion batteries. Foremost vanillin, a naturally occurring food additive that can be sustainably synthesised from industrial biowaste, lignin, was utilised to synthesise materials that showed extraordinary performance as cathodes in Li-ion batteries. Furthermore, behaviour of catecholic and guiacyl groups in Li-ion system was compared, confirming usability of guiacayl containing biopolymers as cathodes in Li-ion batteries. Lastly, naturally occurring polyphenol, tannic acid, was incorporated in fully bioderived hybrid material that shows performance comparable to commercial Li-ion batteries and good stability. This thesis presents an important advancement in understanding of biowaste derived cathode materials for Li-ion batteries. Further research should be conducted to better understand behaviour of guaiacyl groups during Li-ion battery cycling. Lastly, challenges of incorporation of lignin, an industrial biowaste, have to be addressed and lignin should be incorporated as a cathode material in Li-ion batteries. N2 - Diese Dissertation untersucht, wie nachhaltige Kathoden (Kathodenmaterialien) für Lithium-Ionen-Batterien aus Holzabfällen hergestellt werden können. In den letzten Jahren hat die Menschheit erkannt, wie wenig nachhaltig unsere moderne Gesellschaft ist und große Mengen an Energie verbraucht, welche zum größten Teil aus fossilen Brennstoffen gewonnen werden. Daher versucht man jetzt die Energie aus hauptsächlich erneuerbaren Quellen wie Sonne und Wind zu gewinnen. Allerdings kann elektrische Energie nicht einfach wie Öl in einen Kanister gegossen werden, sondern muss in wieder aufladbaren Batterien gespeichert werden. In den letzten Jahren wurden Lithium-Ionen-Batterien entwickelt, die leistungsstark und allgegenwärtig sind, da sie zum Beispiel in Handys und sogar Autos Verwendung finden. Lithium-Ionen-Batterien verwenden jedoch Trägermaterialien aus giftigen Schwermetallen, die abgebaut werden müssen, was sich negativ auf die Umwelt auswirkt. In diesem Zusammenhang ist insbesondere das Schwermetall Kobalt zu erwähnen, welches in den meisten modernen Kathoden verwendet wird. Nach dem Bekanntwerden von Sklaverei und Kinderarbeit beim Kobaltabbau im Kongo, folgten große Kontroversen, da Kobalt praktisch in jedem Gerät führender Unternehmen wie zum Beispiel Apple und Microsoft zu finden ist. Idealerweise müssen wir von nicht erneuerbaren Schwermetallen zu erneuerbaren organischen Molekülen wechseln. Daher verwende ich in meiner Forschung Vanillin, ein Molekül, das hinsichtlich der Elektronenspeicherung ähnliche Eigenschaften wie Schwermetalle aufweist, jedoch viele Vorteile bietet. Erstens erkennt man Vanillin am spezifischen Geruch, da es einer der Hauptbestandteile von Vanille und daher ein natürlich vorkommendes Molekül ist. Zweitens kann es aus Holzabfällen oder aus Abfällen vieler Industrien hergestellt werden, die Holz als Rohstoff verwenden, wie beispielsweise der Papierindustrie. Durch milde chemische Reaktionen in Lösemitteln wie Wasser, Essig und Alkohol haben wir Vanillin zu einem Material modifiziert, welches hervorragende Eigenschaften zur Verwendung in Lithium-Ionen-Batterien hat und die bisher verwendeten Schwermetelle ersetzen kann. Diese Batterien wären somit erneuerbar und können uns der nachhaltigen Welt einen Schritt näher bringen. Darüber hinaus wurde Tanninsäure, ein natürlich vorkommendes Polymer in Holzrinde, verwendet, um vollständig aus Bioabfällen bestehende Batterien herzustellen. KW - biomass KW - electrochemistry KW - energy conversion KW - polymers KW - redox chemistry KW - Biomasse KW - Elektrochemie KW - Energieumwandlung KW - Polymere KW - Redoxchemie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483689 ER - TY - GEN A1 - Ilic, Ivan K. A1 - Tsouka, Alexandra A1 - Perovic, Milena A1 - Hwang, Jinyeon A1 - Heil, Tobias A1 - Löffler, Felix A1 - Oschatz, Martin A1 - Antonietti, Markus A1 - Liedel, Clemens T1 - Sustainable cathodes for Lithium-ion energy storage devices based on tannic acid-toward ecofriendly energy storage T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The use of organic materials with reversible redox activity holds enormous potential for next-generation Li-ion energy storage devices. Yet, most candidates are not truly sustainable, i.e., not derived from renewable feedstock or made in benign reactions. Here an attempt is reported to resolve this issue by synthesizing an organic cathode material from tannic acid and microporous carbon derived from biomass. All constituents, including the redox-active material and conductive carbon additive, are made from renewable resources. Using a simple, sustainable fabrication method, a hybrid material is formed. The low cost and ecofriendly material shows outstanding performance with a capacity of 108 mAh g(-1) at 0.1 A g(-1) and low capacity fading, retaining approximately 80% of the maximum capacity after 90 cycles. With approximately 3.4 V versus Li+/Li, the cells also feature one of the highest reversible redox potentials reported for biomolecular cathodes. Finally, the quinone-catecholate redox mechanism responsible for the high capacity of tannic acid is confirmed by electrochemical characterization of a model compound similar to tannic acid but without catecholic groups. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1366 KW - biomass KW - electrochemistry KW - energy storage KW - redox chemistry KW - sustainability KW - tannic acid Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-570560 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Ilic, Ivan K. A1 - Tsouka, Alexandra A1 - Perovic, Milena A1 - Hwang, Jinyeon A1 - Heil, Tobias A1 - Löffler, Felix A1 - Oschatz, Martin A1 - Antonietti, Markus A1 - Liedel, Clemens T1 - Sustainable cathodes for Lithium-ion energy storage devices based on tannic acid-toward ecofriendly energy storage JF - Advanced sustainable systems N2 - The use of organic materials with reversible redox activity holds enormous potential for next-generation Li-ion energy storage devices. Yet, most candidates are not truly sustainable, i.e., not derived from renewable feedstock or made in benign reactions. Here an attempt is reported to resolve this issue by synthesizing an organic cathode material from tannic acid and microporous carbon derived from biomass. All constituents, including the redox-active material and conductive carbon additive, are made from renewable resources. Using a simple, sustainable fabrication method, a hybrid material is formed. The low cost and ecofriendly material shows outstanding performance with a capacity of 108 mAh g(-1) at 0.1 A g(-1) and low capacity fading, retaining approximately 80% of the maximum capacity after 90 cycles. With approximately 3.4 V versus Li+/Li, the cells also feature one of the highest reversible redox potentials reported for biomolecular cathodes. Finally, the quinone-catecholate redox mechanism responsible for the high capacity of tannic acid is confirmed by electrochemical characterization of a model compound similar to tannic acid but without catecholic groups. KW - biomass KW - electrochemistry KW - energy storage KW - redox chemistry KW - sustainability KW - tannic acid Y1 - 2020 U6 - https://doi.org/10.1002/adsu.202000206 SN - 2366-7486 VL - 5 IS - 1 PB - Wiley-VCH CY - Weinheim ER -