TY - JOUR A1 - Bookhagen, Bodo A1 - Strecker, Manfred T1 - Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes JF - Earth & planetary science letters N2 - The tectonic and climatic boundary conditions of the broken foreland and the orogen interior of the southern Central Andes of northwestern Argentina cause strong contrasts in elevation, rainfall, and surface-process regimes. The climatic gradient in this region ranges from the wet, windward eastern flanks (similar to 2 m/yr rainfall) to progressively drier western basins and ranges (similar to 0.1 m/yr) bordering the arid Altiplano-Puna Plateau. In this study, we analyze the impact of spatiotemporal climatic gradients on surface erosion: First, we present 41 new catchment-mean erosion rates derived from cosmogenic nuclide inventories to document spatial erosion patterns. Second, we re-evaluate paleoclimatic records from the Calchaquies basin (66 W, 26 S), a large intermontane basin bordered by high (> 4.5 km) mountain ranges, to demonstrate temporal variations in erosion rates associated with changing climatic boundary conditions during the late Pleistocene and Holocene. Three key observations in this region emphasize the importance of climatic parameters on the efficiency of surface processes in space and time: (1) First-order spatial patterns of erosion rates can be explained by a simple specific stream power (SSP) approach. We explicitly account for discharge by routing high-resolution, satellite derived rainfall. This is important as the steep climatic gradient results in a highly non-linear relation between drainage area and discharge. This relation indicates that erosion rates (ER) scale with ER similar to SSP1.4 on cosmogenic-nuclide time scales. (2) We identify an intrinsic channel-slope behavior in different climatic compartments. Channel slopes in dry areas (< 0.25 m/yr rainfall) are slightly steeper than in wet areas (> 0.75 m/yr) with equal drainage areas, thus compensating lower amounts of discharge with steeper slopes. (3) Erosion rates can vary by an order of magnitude between presently dry (similar to 0.05 mm/yr) and well-defined late Pleistocene humid (similar to 0.5 mm/yr) conditions within an intemontane basin. Overall, we document a strong climatic impact on erosion rates and channel slopes. We suggest that rainfall reaching areas with steeper channel slopes in the orogen interior during wetter climate periods results in intensified sediment mass transport, which is primarily responsible for maintaining the balance between surface uplift, erosion, sediment routing and transient storage in the orogen. KW - erosion KW - landscape evolution KW - specific stream power KW - cosmogenic radionuclides KW - paleoclimate KW - climate-tectonic feedback processes Y1 - 2012 U6 - https://doi.org/10.1016/j.epsl.2012.02.005 SN - 0012-821X VL - 327 IS - 8 SP - 97 EP - 110 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Fan, Xuanmei A1 - Scaringi, Gianvito A1 - Korup, Oliver A1 - West, A. Joshua A1 - van Westen, Cees J. A1 - Tanyas, Hakan A1 - Hovius, Niels A1 - Hales, Tristram C. A1 - Jibson, Randall W. A1 - Allstadt, Kate E. A1 - Zhang, Limin A1 - Evans, Stephen G. A1 - Xu, Chong A1 - Li, Gen A1 - Pei, Xiangjun A1 - Xu, Qiang A1 - Huang, Runqiu T1 - Earthquake-Induced Chains of Geologic Hazards BT - Patterns, Mechanisms, and Impacts JF - Reviews of geophysics N2 - Large earthquakes initiate chains of surface processes that last much longer than the brief moments of strong shaking. Most moderate‐ and large‐magnitude earthquakes trigger landslides, ranging from small failures in the soil cover to massive, devastating rock avalanches. Some landslides dam rivers and impound lakes, which can collapse days to centuries later, and flood mountain valleys for hundreds of kilometers downstream. Landslide deposits on slopes can remobilize during heavy rainfall and evolve into debris flows. Cracks and fractures can form and widen on mountain crests and flanks, promoting increased frequency of landslides that lasts for decades. More gradual impacts involve the flushing of excess debris downstream by rivers, which can generate bank erosion and floodplain accretion as well as channel avulsions that affect flooding frequency, settlements, ecosystems, and infrastructure. Ultimately, earthquake sequences and their geomorphic consequences alter mountain landscapes over both human and geologic time scales. Two recent events have attracted intense research into earthquake‐induced landslides and their consequences: the magnitude M 7.6 Chi‐Chi, Taiwan earthquake of 1999, and the M 7.9 Wenchuan, China earthquake of 2008. Using data and insights from these and several other earthquakes, we analyze how such events initiate processes that change mountain landscapes, highlight research gaps, and suggest pathways toward a more complete understanding of the seismic effects on the Earth's surface. KW - earthquake-induced landslides KW - debris flows KW - geohazards KW - landscape evolution KW - sediment cascade KW - continental earthquakes Y1 - 2019 U6 - https://doi.org/10.1029/2018RG000626 SN - 8755-1209 SN - 1944-9208 VL - 57 IS - 2 SP - 421 EP - 503 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Hartmann, Anne T1 - Tracing the evolution of hillslope structure and hillslope hydrological response over ten millennia in two glacial forefields of different geology T1 - Nachverfolgung der Evolution von Hangstruktur und hydrologischer Reaktion über zehn Jahrtausende in zwei Gletschervorfeldern N2 - Assessing the impact of global change on hydrological systems is one of the greatest hydrological challenges of our time. Changes in land cover, land use, and climate have an impact on water quantity, quality, and temporal availability. There is a widespread consensus that, given the far-reaching effects of global change, hydrological systems can no longer be viewed as static in their structure; instead, they must be regarded as entire ecosystems, wherein hydrological processes interact and coevolve with biological, geomorphological, and pedological processes. To accurately predict the hydrological response under the impact of global change, it is essential to understand this complex coevolution. The knowledge of how hydrological processes, in particular the formation of subsurface (preferential) flow paths, evolve within this coevolution and how they feed back to the other processes is still very limited due to a lack of observational data. At the hillslope scale, this intertwined system of interactions is known as the hillslope feedback cycle. This thesis aims to enhance our understanding of the hillslope feedback cycle by studying the coevolution of hillslope structure and hillslope hydrological response. Using chronosequences of moraines in two glacial forefields developed from siliceous and calcareous glacial till, the four studies shed light on the complex coevolution of hydrological, biological, and structural hillslope properties, as well as subsurface hydrological flow paths over an evolutionary period of 10 millennia in these two contrasting geologies. The findings indicate that the contrasting properties of siliceous and calcareous parent materials lead to variations in soil structure, permeability, and water storage. As a result, different plant species and vegetation types are favored on siliceous versus calcareous parent material, leading to diverse ecosystems with distinct hydrological dynamics. The siliceous parent material was found to show a higher activity level in driving the coevolution. The soil pH resulting from parent material weathering emerges as a crucial factor, influencing vegetation development, soil formation, and consequently, hydrology. The acidic weathering of the siliceous parent material favored the accumulation of organic matter, increasing the soils’ water storage capacity and attracting acid-loving shrubs, which further promoted organic matter accumulation and ultimately led to podsolization after 10 000 years. Tracer experiments revealed that the subsurface flow path evolution was influenced by soil and vegetation development, and vice versa. Subsurface flow paths changed from vertical, heterogeneous matrix flow to finger-like flow paths over a few hundred years, evolving into macropore flow, water storage, and lateral subsurface flow after several thousand years. The changes in flow paths among younger age classes were driven by weathering processes altering soil structure, as well as by vegetation development and root activity. In the older age class, the transition to more water storage and lateral flow was attributed to substantial organic matter accumulation and ongoing podsolization. The rapid vertical water transport in the finger-like flow paths, along with the conductive sandy material, contributed to podsolization and thus to the shift in the hillslope hydrological response. In contrast, the calcareous site possesses a high pH buffering capacity, creating a neutral to basic environment with relatively low accumulation of dead organic matter, resulting in a lower water storage capacity and the establishment of predominantly grass vegetation. The coevolution was found to be less dynamic over the millennia. Similar to the siliceous site, significant changes in subsurface flow paths occurred between the young age classes. However, unlike the siliceous site, the subsurface flow paths at the calcareous site only altered in shape and not in direction. Tracer experiments showed that flow paths changed from vertical, heterogeneous matrix flow to vertical, finger-like flow paths after a few hundred to thousands of years, which was driven by root activities and weathering processes. Despite having a finer soil texture, water storage at the calcareous site was significantly lower than at the siliceous site, and water transport remained primarily rapid and vertical, contributing to the flourishing of grass vegetation. The studies elucidated that changes in flow paths are predominantly shaped by the characteristics of the parent material and its weathering products, along with their complex interactions with initial water flow paths and vegetation development. Time, on the other hand, was not found to be a primary factor in describing the evolution of the hydrological response. This thesis makes a valuable contribution to closing the gap in the observations of the coevolution of hydrological processes within the hillslope feedback cycle, which is important to improve predictions of hydrological processes in changing landscapes. Furthermore, it emphasizes the importance of interdisciplinary studies in addressing the hydrological challenges arising from global change. N2 - Die Einschätzung der Auswirkungen des globalen Wandels auf die lokale Hydrologie stellt zweifellos eine der bedeutendsten hydrologischen Herausforderungen unserer Zeit dar. Die zuverlässige Vorhersage der zukünftigen Verfügbarkeit, Menge und Qualität des Wassers in Landschaften gewinnt dabei an höchster Bedeutung. Es herrscht weitgehender Konsens darüber, dass hydrologische Systeme aufgrund des globalen Wandels nicht mehr als statische Gebilde betrachtet werden können. Vielmehr sind sie als ganzheitliche Ökosysteme zu verstehen, in denen hydrologische Prozesse mit biologischen, geomorphologischen und pedologischen Faktoren interagieren und sich gemeinsam entwickeln. Allerdings ist das Wissen über die Entwicklung und die Rückkopplung hydrologischer Prozesse, insbesondere im Hinblick auf die Entstehung unterirdischer (präferenzieller) Fließwege, aufgrund mangelnder Beobachtungsdaten noch stark begrenzt. Das Hauptziel dieser Studie liegt daher darin, anhand von Untersuchungen auf der Hangskala die Wechselwirkung zwischen Struktur und hydrologischem Verhalten zu erforschen. Dadurch soll ein besseres Verständnis für den Rückkopplungszyklus gewonnen werden. Die vier in dieser Arbeit präsentierten Studien befassen sich mit der Entwicklung hydrologischer, biologischer und physikalischer Eigenschaften von Hängen sowie der Evolution hydrologischer Fließwege über einen Zeitraum von zehntausend Jahren in zwei unterschiedlichen geologischen Geologien. Durch die Analyse von Moränen-Chronosequenzen in zwei Gletschervorfeldern, die jeweils aus silikatreichem bzw. kalkreichem Geschiebemergel entstanden sind, wird die komplexe Koevolution in Abhängigkeit von der geologischen Beschaffenheit des Ausgangsmaterials beleuchtet. Die Ergebnisse zeigen, dass die verschiedenen Eigenschaften von silikatreichem und kalkhaltigem Ausgangsmaterial unter den gegebenen Klimabedingungen zu Unterschieden in Bodeneigenschaften, Durchlässigkeit und Wasserspeicherung führen. Dies wiederum begünstigt unterschiedliche Vegetationstypen und resultiert in vielfältigen Ökosystemen mit variierenden hydrologischen Dynamiken. Interessanterweise treibt das silikatreiche Ausgangsmaterial die Koevolution stärker an. Hierbei spielt der pH-Wert des Bodens eine Schlüsselrolle, da er Auswirkungen auf Vegetation, Bodenbildung und folglich auch auf die Hydrologie hat. Die saure Verwitterung des silikatreichen Materials begünstigt die Anreicherung organischer Substanz, was zu einer Erhöhung der Wasserspeicherkapazität des Bodens und zur Podsolisierung führt. Innerhalb weniger Jahrhunderte entwickelt sich das unterirdische Wassertransportsystem von einer vertikalen, heterogenen Matrixströmung zu fingerartigen Fließwegen und nach mehreren Jahrtausenden zu einem System aus Makroporen, wobei die Wasserspeicherung und die unterirdische, laterale Strömung überwiegen. Im Gegensatz dazu weist der kalkhaltige Standort eine hohe pH-Pufferkapazität auf. In dem basischen bis neutralen Milieu sammelt sich vergleichsweise wenig abgestorbene, organische Substanz an, was zu einer geringeren Wasserspeicherkapazität führt und die Ansiedlung von Grasvegetation begünstigt. Die Fließwege ändern lediglich ihre Form, nicht jedoch ihre Richtung. Es wurde lediglich ein Übergang von vertikaler, heterogener Matrixströmung zu vertikalen, fingerartigen Fließwegen beobachtet. Der schnelle vertikale Wassertransport mit geringer Speicherung begünstigt die Erhaltung der Grasvegetation. Die durchgeführten Studien verdeutlichen, dass die Entwicklung der Fließwege hauptsächlich von den Eigenschaften des Ausgangsgesteins und seinen Verwitterungsprodukten sowie von deren komplexen Interaktionen mit den ursprünglichen Fließwegen und der Entwicklung der Vegetation geprägt ist. Im Gegensatz dazu spielt die Zeit keine entscheidende Rolle bei der Beschreibung der Evolution der hydrologischen Reaktion. Diese Studie trägt wesentlich dazu bei, die bestehende Lücke in Beobachtungen für die Erforschung der Koevolution von hydrologischen, biologischen, geomorphologischen und pedologischen Prozessen zu schließen. Dies ist von großer Bedeutung, um Vorhersagen hydrologischer Prozesse in sich wandelnden Landschaften zu verbessern. Sie zeigt außerdem die Relevanz interdisziplinärer Studien auf, um den zukünftigen Herausforderungen in der Hydrologie im Zuge des globalen Wandels erfolgreich zu begegnen. KW - soil hydrology KW - chronosequence study KW - landscape evolution KW - Chronosequenzstudie KW - Landschaftsentwicklung KW - Bodenhydrologie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-628629 ER - TY - JOUR A1 - Landgraf, Angela A1 - Zielke, Olaf A1 - Arrowsmith, J. Ramón A1 - Ballato, Paolo A1 - Strecker, Manfred A1 - Schildgen, Taylor F. A1 - Friedrich, Anke M. A1 - Tabatabaei, Sayyed-Hassan T1 - Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran JF - Journal of geophysical research : Earth surface N2 - The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a simple to a composite state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex. KW - fault interaction KW - landscape evolution KW - numerical modeling KW - Alborz Mountains KW - Iran Y1 - 2013 U6 - https://doi.org/10.1002/jgrf.20109 SN - 2169-9003 SN - 2169-9011 VL - 118 IS - 3 SP - 1792 EP - 1805 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Mey, Jürgen T1 - Intermontane valley fills T1 - Intermontane Talverfüllungen BT - recorders of climate, tectonics and landscape evolution BT - Zeugen von Klima, Tektonik und Landschaftsentwicklung N2 - Sedimentary valley fills are a widespread characteristic of mountain belts around the world. They transiently store material over time spans ranging from thousands to millions of years and therefore play an important role in modulating the sediment flux from the orogen to the foreland and to oceanic depocenters. In most cases, their formation can be attributed to specific fluvial conditions, which are closely related to climatic and tectonic processes. Hence, valley-fill deposits constitute valuable archives that offer fundamental insight into landscape evolution, and their study may help to assess the impact of future climate change on sediment dynamics. In this thesis I analyzed intermontane valley-fill deposits to constrain different aspects of the climatic and tectonic history of mountain belts over multiple timescales. First, I developed a method to estimate the thickness distribution of valley fills using artificial neural networks (ANNs). Based on the assumption of geometrical similarity between exposed and buried parts of the landscape, this novel and highly automated technique allows reconstructing fill thickness and bedrock topography on the scale of catchments to entire mountain belts. Second, I used the new method for estimating the spatial distribution of post-glacial sediments that are stored in the entire European Alps. A comparison with data from exploratory drillings and from geophysical surveys revealed that the model reproduces the measurements with a root mean squared error (RMSE) of 70m and a coefficient of determination (R2) of 0.81. I used the derived sediment thickness estimates in combination with a model of the Last Glacial Maximum (LGM) icecap to infer the lithospheric response to deglaciation, erosion and deposition, and deduce their relative contribution to the present-day rock-uplift rate. For a range of different lithospheric and upper mantle-material properties, the results suggest that the long-wavelength uplift signal can be explained by glacial isostatic adjustment with a small erosional contribution and a substantial but localized tectonic component exceeding 50% in parts of the Eastern Alps and in the Swiss Rhône Valley. Furthermore, this study reveals the particular importance of deconvolving the potential components of rock uplift when interpreting recent movements along active orogens and how this can be used to constrain physical properties of the Earth’s interior. In a third study, I used the ANN approach to estimate the sediment thickness of alluviated reaches of the Yarlung Tsangpo River, upstream of the rapidly uplifting Namche Barwa massif. This allowed my colleagues and me to reconstruct the ancient river profile of the Yarlung Tsangpo, and to show that in the past, the river had already been deeply incised into the eastern margin of the Tibetan Plateau. Dating of basal sediments from drill cores that reached the paleo-river bed to 2–2.5 Ma are consistent with mineral cooling ages from the Namche Barwa massif, which indicate initiation of rapid uplift at ~4 Ma. Hence, formation of the Tsangpo gorge and aggradation of the voluminous valley fill was most probably a consequence of rapid uplift of the Namche Barwa massif and thus tectonic activity. The fourth and last study focuses on the interaction of fluvial and glacial processes at the southeastern edge of the Karakoram. Paleo-ice-extent indicators and remnants of a more than 400-m-thick fluvio-lacustrine valley fill point to blockage of the Shyok River, a main tributary of the upper Indus, by the Siachen Glacier, which is the largest glacier in the Karakoram Range. Field observations and 10Be exposure dating attest to a period of recurring lake formation and outburst flooding during the penultimate glaciation prior to ~110 ka. The interaction of Rivers and Glaciers all along the Karakorum is considered a key factor in landscape evolution and presumably promoted headward erosion of the Indus-Shyok drainage system into the western margin of the Tibetan Plateau. The results of this thesis highlight the strong influence of glaciation and tectonics on valley-fill formation and how this has affected the evolution of different mountain belts. In the Alps valley-fill deposition influenced the magnitude and pattern of rock uplift since ice retreat approximately 17,000 years ago. Conversely, the analyzed valley fills in the Himalaya are much older and reflect environmental conditions that prevailed at ~110 ka and ~2.5 Ma, respectively. Thus, the newly developed method has proven useful for inferring the role of sedimentary valley-fill deposits in landscape evolution on timescales ranging from 1,000 to 10,000,000 years. N2 - Sedimentäre Talverfüllungen sind ein häufiges Merkmal von Gebirgen auf der ganzen Welt. Sie speichern Abtragungsprodukte über Zeiträume von Tausenden bis Millionen von Jahren und beeinflussen den Sedimenttransport vom Gebirge in das Vorland und in die ozeanischen Becken. Die Bildung solcher Sedimentspeicher geht oft auf Zustände im fluvialen System zurück, welche mit bestimmten klimatischen und tektonischen Prozessen in Verbindung gebracht werden können. Talverfüllungen stellen daher wertvolle Archive dar, die über fundamentale Zusammenhänge in der Landschaftsgenese Aufschluss geben und deren Untersuchung dazu beiträgt, die Auswirkungen des Klimawandels auf die Sedimentdynamik im Gebirge zu prognostizieren. In dieser Arbeit untersuchte ich intermontane Talverfüllungen, um die klimatische und tektonische Geschichte von Gebirgszügen über mehrere Zeitskalen hinweg zu ermitteln. Zuerst entwickelte ich eine Methode zur Abschätzung von Sedimentmächtigkeiten mit Hilfe von künstlichen neuralen Netzen, die auf der Annahme basiert, dass sich die zugeschütteten und die freiliegenden Bereiche der Landschaft geometrisch ähneln. Diese neuartige und hochautomatisierte Methode macht es möglich, Sedimentmächtigkeiten und Untergrundtopographien für einzelne Einzugsgebiete bis hin zu ganzen Gebirgen abzuschätzen. Als zweites benutzte ich die neue Methode, um die Mächtigkeitsverteilung der postglazialen Sedimentspeicher in den Europäischen Alpen zu rekonstruieren. Ein Vergleich mit Daten aus Bohrlochmessungen und geophysikalischen Explorationen zeigte, dass das Modell die gemessenen Mächtigkeiten mit einem quadratischen Mittelwert des Fehlers (RMSE) von 70m und einem Bestimmtheitsmaß (R2) von 0.81 reproduziert. Ich verwendete diese Sedimentverteilung in Kombination mit einem Modell der alpinen Eiskappe des letzten glazialen Maximums (LGM), um die Reaktion der Lithosphäre auf Abschmelzen, Erosion und Ablagerung zu berechnen und deren Beiträge zur derzeitigen Gesteinshebung abzuleiten. Unter Berücksichtigung einer Reihe verschiedener Eigenschaften der Lithosphäre und des oberen Erdmantels zeigten die Resultate, dass das langwellige Hebungsmuster im Wesentlichen durch Glazialisostasie erklärt werden kann und dass die Entlastung durch Erosion eine untergeordnete Rolle spielt. Darüber hinaus postulierte ich eine tektonische Komponente von über 50% in Teilen der Ostalpen und im Schweizer Rhône Tal. Die Studie verdeutlicht, dass die Entflechtung der Prozesse, die zur Gesteinshebung beitragen, eine entscheidende Rolle spielt bei der Interpretation rezenter Bewegungen entlang aktiver Orogene und bei der Abschätzung von physikalischen Eigenschaften des Erdinneren. Im dritten Teil berechnete ich die Mächtigkeitsverteilung der sedimentären Talverfüllung des Yarlung Tsangpo Tales oberhalb des Namche Barwa Massivs am östlichen Rand des Tibet Plateaus. Dies ermöglichte meinen Kollegen und mir das ehemalige Flusslängsprofil zu rekonstruieren und zu zeigen, dass sich der Yarlung Tsangpo in der Vergangenheit bereits tief in den östlichen Rand des Tibet Plateaus einschnitt. Die Basis der Sedimente wurde erbohrt und beprobt und deren Ablagerung auf 2–2.5 Ma datiert was konsistent mit Abkühlungsaltern von Mineralen des Namche Barwa Massivs ist, die auf den Beginn einer beschleunigten Hebung vor ~4 Ma hindeuten. Dies führte zu der Schlussfolgerung, dass die Bildung der Tsangpo Schlucht und die Aggradation der Talsedimente höchstwahrscheinlich in Folge der schnellen Hebung des Namche Barwa Massivs geschah, welche letztendlich auf tektonische Aktivität zurück geht. Der vierte und letzte Teil behandelt die Interaktion fluvialer und glazialer Prozesse am südöstlichen Rand des Karakorums. Indikatoren für die frühere Eisausdehnung und die Überreste einer bis zu 400m mächtigen fluvio-lakustrinen Talverfüllung weisen auf eine Blockade des Shyok, eines Hauptzuflusses es Oberen Indus, durch den Siachen Gletscher, den größten Gletscher des Karakorums, hin. Weitere Geländebefunde und Oberflächendatierungen mittels kosmogenem 10Be bezeugen, dass es während des vorletzten Glaziales zu einem mehrfachen Aufstauen des Shyok und damit assoziierten Seeausbrüchen gekommen ist. Das Zusammenwirken von Flüssen und Gletschern entlang des Karakorums war maßgeblich für die Landschaftsentwicklung und führte möglicherweise zum Einschneiden von Tälern in den westlichen Rand des Tibet Plateaus. Die vorliegende Arbeit unterstreicht die Bedeutung von Vergletscherung und Tektonik bei der Bildung von intermontanen Sedimentspeichern und deren Einwirken auf die Entwicklung zweier Gebirge. In den Alpen beeinflusst die Ablagerung von Talfüllungen die Raten und das Muster der Gesteinshebung seit Rückzug des Eises vor ca. 17,000 Jahren. Demgegenüber sind die in dieser Arbeit betrachteten Talfüllungen des Himalayas weit älter und geben Aufschluss über die Umweltbedingungen vor jeweils 110 ka und 2.5 Ma. Es zeigt sich, dass die neue Methode zur Abschätzung von Mächtigkeiten und Volumina intermontaner Talverfüllungen dazu beiträgt, die Landschaftsentwicklung über Zeiträume von 1,000 bis 10,000,000 Jahren zu rekonstruieren. KW - intermontane valley fill KW - sediment thickness KW - bedrock elevation KW - artificial neural networks KW - sediment volume KW - landscape evolution KW - glacial isostatic adjustment KW - isostatic uplift KW - LGM KW - Ice model KW - European Alps KW - outburst floods KW - glacial incision KW - Tibetan Plateau KW - Shyok River KW - cosmogenic nuclides KW - exposure age dating KW - ice dam KW - Karakoram KW - Namche Barwa KW - Yarlung-Tsangpo Gorge KW - burial dating KW - tectonic uplift KW - syntaxis KW - intermontane Talverfüllungen KW - Sedimentmächtigkeit KW - Grundgesteinshöhe KW - künstliche neurale Netzwerke KW - Sedimentvolumen KW - Landschaftsentwicklung KW - Glazialisostasie KW - isostatische Hebung KW - LGM KW - Eismodell KW - Europäische Alpen KW - Seeausbrüche KW - glaziale Einschneidung KW - Tibet Plateau KW - Shyok Fluss KW - kosmogene Nuklide KW - Expositionsaltersdatierung KW - Eisdamm KW - Karakorum KW - Namche Barwa KW - Yarlung-Tsangpo Schlucht KW - Verschüttungsaltersdatierung KW - tektonische Hebung KW - Syntaxe Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-103158 ER - TY - GEN A1 - Mudd, Simon M. A1 - Clubb, Fiona J. A1 - Gailleton, Boris A1 - Hurst, Martin D. T1 - How concave are river channels? T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - For over a century, geomorphologists have attempted to unravel information about landscape evolution, and processes that drive it, using river profiles. Many studies have combined new topographic datasets with theoretical models of channel incision to infer erosion rates, identify rock types with different resistance to erosion, and detect potential regions of tectonic activity. The most common metric used to analyse river profile geometry is channel steepness, or k(s). However, the calculation of channel steepness requires the normalisation of channel gradient by drainage area. This normalisation requires a power law exponent that is referred to as the channel concavity index. Despite the concavity index being crucial in determining channel steepness, it is challenging to constrain. In this contribution, we compare both slope-area methods for calculating the concavity index and methods based on integrating drainage area along the length of the channel, using so-called "chi" (chi) analysis. We present a new chi-based method which directly compares chi values of tributary nodes to those on the main stem; this method allows us to constrain the concavity index in transient landscapes without assuming a linear relationship between chi and elevation. Patterns of the concavity index have been linked to the ratio of the area and slope exponents of the stream power incision model (m/n); we therefore construct simple numerical models obeying detachment-limited stream power and test the different methods against simulations with imposed m and n. We find that chi-based methods are better than slope-area methods at reproducing imposed m/n ratios when our numerical landscapes are subject to either transient uplift or spatially varying uplift and fluvial erodibility. We also test our methods on several real landscapes, including sites with both lithological and structural heterogeneity, to provide examples of the methods' performance and limitations. These methods are made available in a new software package so that other workers can explore how the concavity index varies across diverse landscapes, with the aim to improve our understanding of the physics behind bedrock channel incision. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 718 KW - Oregon coast range KW - BE-10-derived erosion rates KW - rock-uplift rates KW - stream-power KW - longitudinal profiles KW - landscape evolution KW - incision model KW - threshold hillslopes KW - Pacific-Northwest KW - active tectonics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426998 SN - 1866-8372 IS - 718 ER - TY - JOUR A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Wulf, Hendrik A1 - Preusser, Frank A1 - Strecker, Manfred T1 - Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India JF - Earth & planetary science letters N2 - The response of surface processes to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Himalaya, most large rivers feature prominent fill terraces that record an imbalance between sediment supply and transport capacity, presumably due to past fluctuations in monsoon precipitation and/or effects of glaciation at high elevation. Here, we present volume estimates, chronological constraints, and Be-10-derived paleo-erosion rates from a prominent valley fill in the Yamuna catchment, Garhwal Himalaya, to elucidate the coupled response of rivers and hillslopes to Pleistocene climate change. Although precise age control is complicated due to methodological problems, the new data support formation of the valley fill during the late Pleistocene and its incision during the Holocene. We interpret this timing to indicate that changes in discharge and river-transport capacity were major controls. Compared to the present day, late Pleistocene hillslope erosion rates were higher by a factor of similar to 2-4, but appear to have decreased during valley aggradation. The higher late Pleistocene erosion rates are largely unrelated to glacial erosion and could be explained by enhanced sediment production on steep hillslopes due to increased periglacial activity that declined as temperatures increased. Alternatively, erosion rates that decrease during valley aggradation are also consistent with reduced landsliding from threshold hillslopes as a result of rising base levels. In that case, the similarity of paleo-erosion rates near the end of the aggradation period with modern erosion rates might imply that channels and hillslopes are not yet fully coupled everywhere and that present-day hillslope erosion rates may underrepresent long-term incision rates. (C) 2015 Elsevier B.V. All rights reserved. KW - paleo-erosion rates KW - climate change KW - river terraces KW - landscape evolution KW - hillslopes KW - Himalaya Y1 - 2015 U6 - https://doi.org/10.1016/j.epsl.2015.06.034 SN - 0012-821X SN - 1385-013X VL - 428 SP - 255 EP - 266 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Scherler, Dirk A1 - Schwanghart, Wolfgang T1 - Drainage divide networks BT - Part 2: Response to perturbations JF - Earth surface dynamics N2 - Drainage divides are organized into tree-like networks that may record information about drainage divide mobility. However, views diverge about how to best assess divide mobility. Here, we apply a new approach of automatically extracting and ordering drainage divide networks from digital elevation models to results from landscape evolution model experiments. We compared landscapes perturbed by strike-slip faulting and spatiotemporal variations in erodibility to a reference model to assess which topographic metrics (hillslope relief, flow distance, and chi) are diagnostic of divide mobility. Results show that divide segments that are a minimum distance of similar to 5 km from river confluences strive to attain constant values of hillslope relief and flow distance to the nearest stream. Disruptions of such patterns can be related to mobile divides that are lower than stable divides, closer to streams, and often asymmetric in shape. In general, we observe that drainage divides high up in the network, i.e., at great distances from river confluences, are more susceptible to disruptions than divides closer to these confluences and are thus more likely to record disturbance for a longer time period. We found that across-divide differences in hillslope relief proved more useful for assessing divide migration than other tested metrics. However, even stable drainage divide networks exhibit across-divide differences in any of the studied topographic metrics. Finally, we propose a new metric to quantify the connectivity of divide junctions. KW - dynamics KW - landscape evolution KW - low-relief KW - patterns KW - river KW - scale KW - tectonics Y1 - 2020 U6 - https://doi.org/10.5194/esurf-8-261-2020 SN - 2196-6311 SN - 2196-632X VL - 8 IS - 2 SP - 261 EP - 274 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schildgen, Taylor F. A1 - Hoke, Gregory D. T1 - The topographic evolution of the central andes JF - Elements : an international magazine of mineralogy, geochemistry, and petrology N2 - Changes in topography on Earth, particularly the growth of major mountain belts like the Central Andes, have a fundamental impact on regional and global atmospheric circulation patterns. These patterns, in turn, affect processes such as precipitation, erosion, and sedimentation. Over the last two decades, various geochemical, geomorphologic, and geologic approaches have helped identify when, where, and how quickly topography has risen in the past. The current spatio-temporal picture of Central Andean growth is now providing insight into which deep-Earth processes have left their imprint on the shape of the Earth's surface. KW - paleoaltimetry KW - stable isotopes KW - relief development KW - river incision KW - landscape evolution Y1 - 2018 U6 - https://doi.org/10.2138/gselements.14.4.231 SN - 1811-5209 SN - 1811-5217 VL - 14 IS - 4 SP - 231 EP - 236 PB - Mineralogical Society of America CY - Chantilly ER - TY - JOUR A1 - Schildgen, Taylor F. A1 - van der Beek, Peter A. A1 - D'Arcy, Mitch A1 - Roda-Boluda, Duna N. A1 - Orr, Elizabeth N. A1 - Wittmann, Hella T1 - Quantifying drainage-divide migration from orographic rainfall over geologic timescales BT - Sierra de Aconquija, southern Central Andes JF - Earth & planetary science letters N2 - Drainage-divide migration, controlled by rock-uplift and rainfall patterns, may play a major role in the geomorphic evolution of mountain ranges. However, divide-migration rates over geologic timescales have only been estimated by theoretical studies and remain empirically poorly constrained. Geomorphological evidence suggests that the Sierra de Aconquija, on the eastern side of the southern Central Andes, northwest Argentina, is undergoing active westward drainage-divide migration. The mountain range has been subjected to steep rock trajectories and pronounced orographic rainfall for the last several million years, presenting an ideal setting for using low-temperature thermochronometric data to explore its topographic evolution. We perform three-dimensional thermal-kinematic modeling of previously published thermochronometric data spanning the windward and leeward sides of the range to explore the most likely structural and topographic evolution of the range. We find that the data can be explained by scenarios involving drainage-divide migration alone, or by scenarios that also involve changes in the structures that have accommodated deformation through time. By combining new Be-10-derived catchment-average denudation rates with geomorphic constraints on probable fault activity, we conclude that the evolution of the range was likely dominated by west-vergent faulting on a high-angle reverse fault underlying the range, together with westward drainage-divide migration at a rate of several km per million years. Our findings place new constraints on the magnitudes and rates of drainage-divide migration in real landscapes, quantify the effects of orographic rainfall and erosion on the topographic evolution of a mountain range, and highlight the importance of considering drainage-divide migration when interpreting thermochronometer age patterns. KW - drainage-divide migration KW - landscape evolution KW - orographic rainfall KW - thermochronology KW - cosmogenic nuclides KW - Central Andes Y1 - 2022 U6 - https://doi.org/10.1016/j.epsl.2021.117345 SN - 0012-821X SN - 1385-013X VL - 579 PB - Elsevier CY - Amsterdam ER -