TY - GEN A1 - Ehlert, Christopher A1 - Unger, Wolfgang E. S. A1 - Saalfrank, Peter T1 - C K-edge NEXAFS spectra of graphene with physical and chemical defects BT - a study based on density functional theory N2 - Recently, C K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of graphite (HOPG) surfaces have been measured for the pristine material, and for HOPG treated with either bromine or krypton plasmas (Lippitz et al., Surf. Sci., 2013, 611, L1). Changes of the NEXAFS spectra characteristic for physical (krypton) and/or chemical/physical modifications of the surface (bromine) upon plasma treatment were observed. Their molecular origin, however, remained elusive. In this work we study by density functional theory, the effects of selected point and line defects as well as chemical modifications on NEXAFS carbon K-edge spectra of single graphene layers. For Br-treated surfaces, also Br 3d X-ray Photoelectron Spectra (XPS) are simulated by a cluster approach, to identify possible chemical modifications. We observe that some of the defects related to plasma treatment lead to characteristic changes of NEXAFS spectra, similar to those in experiment. Theory provides possible microscopic origins for these changes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 173 KW - absorbtion fine-structure KW - graphite Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-74429 SP - 14083 EP - 14095 ER - TY - JOUR A1 - Ehlert, Christopher A1 - Unger, Wolfgang E. S. A1 - Saalfrank, Peter T1 - C K-edge NEXAFS spectra of graphene with physical and chemical defects BT - a study based on density functional theory JF - physical chemistry, chemical physics : PCCP N2 - Recently, C K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of graphite (HOPG) surfaces have been measured for the pristine material, and for HOPG treated with either bromine or krypton plasmas (Lippitz et al., Surf. Sci., 2013, 611, L1). Changes of the NEXAFS spectra characteristic for physical (krypton) and/or chemical/physical modifications of the surface (bromine) upon plasma treatment were observed. Their molecular origin, however, remained elusive. In this work we study by density functional theory, the effects of selected point and line defects as well as chemical modifications on NEXAFS carbon K-edge spectra of single graphene layers. For Br-treated surfaces, also Br 3d X-ray Photoelectron Spectra (XPS) are simulated by a cluster approach, to identify possible chemical modifications. We observe that some of the defects related to plasma treatment lead to characteristic changes of NEXAFS spectra, similar to those in experiment. Theory provides possible microscopic origins for these changes. KW - absorbtion fine-structure KW - graphite Y1 - 2014 U6 - https://doi.org/10.1039/c4cp01106f SN - 1463-9076 SN - 1463-9084 VL - 2014 IS - 16 SP - 14083 EP - 14095 ER - TY - GEN A1 - Sparkes, Robert B. A1 - Hovius, Niels A1 - Galy, Albert A1 - Liu, James T. T1 - Survival of graphitized petrogenic organic carbon through multiple erosional cycles T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Graphite forms the endpoint for organic carbon metamorphism; it is extremely resilient to physical, biological and chemical degradation. Carbonaceous materials (CM) contained within sediments, collected across Taiwan and from the Gaoping submarine canyon, were analyzed using Raman spectroscopy to determine the crystallinity. This allowed the erosional and orogenic movements of petrogenic organic carbon (OCpetro) during the Taiwanese orogeny to be deduced. After automatically fitting and classifying spectra, the distribution of four groups of CM within the sediments provides evidence that many forms of OCpetro have survived at least one previous cycle of erosion, transport and burial before forming rocks in the Western Foothills of the island. There is extensive detrital graphite present in rocks that have not experienced high-grade metamorphism, and graphite flakes are also found in recently deposited marine sediments off Taiwan. The tectonic and geological history of the island shows that these graphite flakes must have survived at least three episodes of recycling. Therefore, transformation to graphite during burial and orogeny is a mechanism for stabilizing organic carbon over geological time, removing biospheric carbon from the active carbon cycle and protecting it from oxidation during future erosion events. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1223 KW - graphite KW - organic carbon KW - orogeny KW - recycling KW - Raman spectroscopy KW - erosion Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-533541 SN - 1866-8372 ER -