TY - THES A1 - Kar, Manaswita T1 - Energy band gap tuning of halide perovskite materials from first principles N2 - Solar cells based on hybrid perovskites materials have become significantly important among the third generation photovoltaics over the last few years. The first solid state solar cell was reported in 2012. Over the years, the power conversion efficiencies of these devices have increased at a tremendous pace and this has made the perovskite solar cell devices a serious competitor in the well-established market of thin-film and wafer technologies. Over time, a large number of articles on this topic has been published in peer-reviewed journals. The presence of lead in the most efficient hybrid perovskite materials have raised questions about the possible toxicity of these devices and the extent of their environmental impact. Therefore, a lot of research has been devoted to finding alternative perovskite materials with similar or even better opto-electronic properties. An alternative strategy to improve the efficiency of thin film solar cells is to build efficient tandem cells by combining two or more perovskite materials with specifically tailored band gaps. The first step towards the development of perovskite-only tandem solar cells is to identify complementary hybrid perovskite materials with specific band gaps that maximize the efficiency of tandem solar cells. The optimal set of optical gaps for a tandem structure made of two materials is 1.9 eV and 1.0 eV. Since the electronic properties of hybrid perovskites are known to be strongly dependent on the composition and distortion of the crystal lattice, strong focus has been made towards the structure optimisation as well as the calculation of the energy band gaps of the materials using density functional theory (DFT). In an attempt to study the structure-property relationship of these perovskite materials and to find novel perovskite materials for future applications, researchers have employed computational screening procedures to study a large range of these materials by systematic replacement of the cations and anions from the prototypical perovskite. Density functional theory in particular is used as a theoretical tool, because of it’s precision to determine the properties of materials and also it’s computational viability in dealing with complex systems. In this thesis, the main focus is to do a systematic screening of the perovskite materials, of the composition ABX3 again by replacing the A-site, B-site and the X-site elements to find novel materials with band gaps suitable for application in tandem solar cells. As a first step towards contributing to this vibrant field of research, a high-throughput computational screening has been performed by replacing the metal and the halogen in the conventional CH3NH3PbI3 perovskites with homovalent metals and halogens to find materials in the desired range of band gaps that has already been mentioned earlier. This is achieved by performing a geometry optimisation on all the simulated structures followed by calculating their energy band gaps at the semilocal and the hybrid levels of theory. However, it is well known that the rotation of the organic cation CH3NH3 hinders the stability of these devices by the formation of hydrogen bonds between the hydrogen atoms of the cation and the halogens. This causes the materials to degrade under normal temperature and pressure conditions. As an attempt to prevent these devices from being unstable, a next step has been taken where the CH3NH3 cation has been replaced by inorganic cations of similar ionic radius. This is followed by another thorough screening, similar to the previous step. The stability of the materials has been determined by using the empirical Goldschmidt tolerance factor. As a last part of the thesis, a small proportion of the inorganic cation is mixed with CH3NH3 in order to form mixed-halide perovskites. These structures are optimised and their band gaps are calculated using density functional theory in order to predict materials suitable for single junction as well as tandem solar cell devices. It is expected that the contribution made through this thesis will be helpful for the progress of perovskite solar cells in terms of efficiencies and will also allow the community to explore the different properties these materials for further progress and development. KW - Solar cells KW - Perovskites KW - Density functional theory KW - hybrid KW - inorganic Y1 - ER - TY - JOUR A1 - Schattauer, Sylvia A1 - Reinhold, Beate A1 - Albrecht, Steve A1 - Fahrenson, Christoph A1 - Schubert, Marcel A1 - Janietz, Silvia A1 - Neher, Dieter T1 - Influence of sintering on the structural and electronic properties of TiO2 nanoporous layers prepared via a non-sol-gel approach JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - In this work, a nonaqueous method is used to fabricate thin TiO2 layers. In contrast to the common aqueous sol-gel approach, our method yields layers of anatase nanocrystallites already at low temperature. Raman spectroscopy, electron microscopy and charge extraction by linearly increasing voltage are employed to study the effect of sintering temperature on the structural and electronic properties of the nanocrystalline TiO2 layer. Raising the sintering temperature from 120 to 600 A degrees C is found to alter the chemical composition, the layer's porosity and its surface but not the crystal phase. The room temperature mobility increases from 2 x 10(-6) to 3 x 10(-5) cm(2)/Vs when the sinter temperature is increased from 400 to 600 A degrees C, which is explained by a better interparticle connectivity. Solar cells comprising such nanoporous TiO2 layers and a soluble derivative of cyclohexylamino-poly(p-phenylene vinylene) were fabricated and studied with regard to their structural and photovoltaic properties. We found only weak polymer infiltration into the oxide layer for sintering temperatures up to 550 A degrees C, while the polymer penetrated deeply into titania layers that were sintered at 600 A degrees C. Best photovoltaic performance was reached with a nanoporous TiO2 film sintered at 550 A degrees C, which yielded a power conversion efficiency of 0.5 %. Noticeably, samples with the TiO2 layer dried at 120 A degrees C displayed short-circuit currents and open circuit voltages only about 15-20 % lower than for the most efficient devices, meaning that our nonaqueous route yields titania layers with reasonable transport properties even at low sintering temperatures. KW - Nonaqueous sol-gel KW - Thin nanocrystalline TiO2 layer KW - Solar cells KW - Effect of sintering KW - Linearly increasing voltage (CELIV) KW - Polymer infiltration KW - Transport properties titania KW - Transient fluorescence Y1 - 2012 U6 - https://doi.org/10.1007/s00396-012-2708-9 SN - 0303-402X VL - 290 IS - 18 SP - 1843 EP - 1854 PB - Springer CY - New York ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Wolff, Christian Michael A1 - Marquez, Jose A. A1 - Zhang, Shanshan A1 - Hages, Charles J. A1 - Rothhardt, Daniel A1 - Albrecht, Steve A1 - Burn, Paul L. A1 - Meredith, Paul A1 - Unold, Thomas A1 - Neher, Dieter T1 - Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells JF - Nature Energy N2 - The performance of perovskite solar cells is predominantly limited by non-radiative recombination, either through trap-assisted recombination in the absorber layer or via minority carrier recombination at the perovskite/transport layer interfaces. Here, we use transient and absolute photoluminescence imaging to visualize all non-radiative recombination pathways in planar pintype perovskite solar cells with undoped organic charge transport layers. We find significant quasi-Fermi-level splitting losses (135 meV) in the perovskite bulk, whereas interfacial recombination results in an additional free energy loss of 80 meV at each individual interface, which limits the open-circuit voltage (V-oc) of the complete cell to similar to 1.12 V. Inserting ultrathin interlayers between the perovskite and transport layers leads to a substantial reduction of these interfacial losses at both the p and n contacts. Using this knowledge and approach, we demonstrate reproducible dopant-free 1 cm(2) perovskite solar cells surpassing 20% efficiency (19.83% certified) with stabilized power output, a high V-oc (1.17 V) and record fill factor (>81%). KW - Energy science and technology KW - Solar cells Y1 - 2018 U6 - https://doi.org/10.1038/s41560-018-0219-8 SN - 2058-7546 VL - 3 IS - 10 SP - 847 EP - 854 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Vollbrecht, Joachim A1 - Tokmoldin, Nurlan A1 - Sun, Bowen A1 - Brus, Viktor V. A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Determination of the charge carrier density in organic solar cells BT - a tutorial JF - Journal of applied physics N2 - The increase in the performance of organic solar cells observed over the past few years has reinvigorated the search for a deeper understanding of the loss and extraction processes in this class of device. A detailed knowledge of the density of free charge carriers under different operating conditions and illumination intensities is a prerequisite to quantify the recombination and extraction dynamics. Differential charging techniques are a promising approach to experimentally obtain the charge carrier density under the aforementioned conditions. In particular, the combination of transient photovoltage and photocurrent as well as impedance and capacitance spectroscopy have been successfully used in past studies to determine the charge carrier density of organic solar cells. In this Tutorial, these experimental techniques will be discussed in detail, highlighting fundamental principles, practical considerations, necessary corrections, advantages, drawbacks, and ultimately their limitations. Relevant references introducing more advanced concepts will be provided as well. Therefore, the present Tutorial might act as an introduction and guideline aimed at new prospective users of these techniques as well as a point of reference for more experienced researchers. Published under an exclusive license by AIP Publishing. KW - Electrical properties and parameters KW - Organic semiconductors KW - Solar cells KW - Photoconductivity KW - Capacitance spectroscopy Y1 - 2022 U6 - https://doi.org/10.1063/5.0094955 SN - 0021-8979 SN - 1089-7550 SN - 1520-8850 VL - 131 IS - 22 PB - American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Zeiske, Stefan A1 - Sandberg, Oskar J. A1 - Zarrabi, Nasim A1 - Wolff, Christian Michael A1 - Raoufi, Meysam A1 - Peña-Camargo, Francisco A1 - Gutierrez-Partida, Emilio A1 - Meredith, Paul A1 - Stolterfoht, Martin A1 - Armin, Ardalan T1 - Static disorder in lead halide perovskites JF - The journal of physical chemistry letters N2 - In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 +/- 1.0, 13.2 +/- 1.0, and 13.5 +/- 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 ?+/- 0.5, 4.7 +/- 0.3, and 3.3 +/- 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices. KW - Cations KW - External quantum efficiency KW - Perovskites KW - Solar cells KW - Solar energy Y1 - 2022 U6 - https://doi.org/10.1021/acs.jpclett.2c01652 SN - 1948-7185 VL - 13 IS - 31 SP - 7280 EP - 7285 PB - American Chemical Society CY - Washington ER -