TY - THES A1 - Boroudjerdi, Hoda T1 - Charged polymer-macroion complexes T1 - Geladene Polymer-Makroionen Komplexe N2 - This work explores the equilibrium structure and thermodynamic phase behavior of complexes formed by charged polymer chains (polyelectrolytes) and oppositely charged spheres (macroions). Polyelectrolyte-macroion complexes form a common pattern in soft-matter physics, chemistry and biology, and enter in numerous technological applications as well. From a fundamental point of view, such complexes are interesting in that they combine the subtle interplay between electrostatic interactions and elastic as well as entropic effects due to conformational changes of the polymer chain, giving rise to a wide range of structural properties. This forms the central theme of theoretical studies presented in this thesis, which concentrate on a number of different problems involving strongly coupled complexes, i.e. complexes that are characterized by a large adsorption energy and small chain fluctuations. In the first part, a global analysis of the structural phase behavior of a single polyelectrolyte-macroion complex is presented based on a dimensionless representation, yielding results that cover a wide range of realistic system parameters. Emphasize is made on the interplay between the effects due to the polyelectrolytes chain length, salt concentration and the macroion charge as well as the mechanical chain persistence length. The results are summarized into generic phase diagrams characterizing the wrapping-dewrapping behavior of a polyelectrolyte chain on a macroion. A fully wrapped chain state is typically obtained at intermediate salt concentrations and chain lengths, where the amount of polyelectrolyte charge adsorbed on the macroion typically exceeds the bare macroion charge leading thus to a highly overcharged complex. Perhaps the most striking features occur when a single long polyelectrolyte chain is complexed with many oppositely charged spheres. In biology, such complexes form between DNA (which carries the cell's genetic information) and small oppositely charged histone proteins serving as an efficient mechanism for packing a huge amount of DNA into the micron-size cell nucleus in eucaryotic cells. The resultant complex fiber, known as the chromatin fiber, appears with a diameter of 30~nm under physiological conditions. Recent experiments indicate a zig-zag spatial arrangement for individual DNA-histone complexes (nucleosome core particles) along the chromatin fiber. A numerical method is introduced in this thesis based on a simple generic chain-sphere cell model that enables one to investigate the mechanism of fiber formation on a systematic level by incorporating electrostatic and elastic contributions. As will be shown, stable complex fibers exhibit an impressive variety of structures including zig-zag, solenoidal and beads-on-a-string patterns, depending on system parameters such as salt concentration, sphere charge as well as the chain contour length (per sphere). The present results predict fibers of compact zig-zag structure within the physiologically relevant regime with a diameter of about 30~nm, when DNA-histone parameters are adopted. In the next part, a numerical method is developed in order to investigate the role of thermal fluctuations on the structure and thermodynamic phase behavior of polyelectrolyte-macroion complexes. This is based on a saddle-point approximation, which allows to describe the experimentally observed reaction (or complexation) equilibrium in a dilute solution of polyelectrolytes and macroions on a systematic level. This equilibrium is determined by the entropy loss a single polyelectrolyte chain suffers as it binds to an oppositely charged macroion. This latter quantity can be calculated from the spectrum of polyelectrolyte fluctuations around a macroion, which is determined by means of a normal-mode analysis. Thereby, a stability phase diagram is obtained, which exhibits qualitative agreement with experimental findings. At elevated complex concentrations, one needs to account for the inter-complex interactions as well. It will be shown that at small separations, complexes undergo structural changes in such a way that positive patches from one complex match up with negative patches on the other. Furthermore, one of the polyelectrolyte chains may bridge between the two complexes. These mechanisms lead to a strong inter-complex attraction. As a result, the second virial coefficient associated with the inter-complex interaction becomes negative at intermediate salt concentrations in qualitative agreement with recent experiments on solutions of nucleosome core particles. N2 - In dieser Arbeit werden Gleichgewichtsstrukturen und die thermodynamischen Phasen von Komplexen aus geladenen Polymeren (Polyelektrolyten) und entgegengesetzt geladenen Kugeln (Makroionen) untersucht. Polyelektrolyt-Makroion-Komplexe bilden ein grundlegendes und wiederkehrendes Prinzip in der Physik weicher Materie sowie in Chemie und Biologie. In zahlreichen technologischen Prozessen finden sich ebenfalls Anwendungsbeispiele für derartige Komplexe. Zusätzlich zu ihrem häufigen Auftreten sind sie aufgrund ihrer Vielfalt von strukturellen Eigenschaften von grundlegendem Interesse. Diese Vielfalt wird durch ein Zusammenspiel von elektrostatischen Wechselwirkungen sowie elastischen und entropischen Effekten aufgrund von Konformationsänderungen in der Polymerkette bedingt und bildet das zentrale Thema der theoretischen Studien, die mit dieser Arbeit vorgelegt werden. Verschiedene Strukturen und Prozesse, die stark gekoppelte Komplexe beinhalten - das sind solche, für die eine hohe Adsorptionsenergie und geringe Fluktuationen in den Polymerketten charakteristisch sind -, bilden das Hauptthema der Arbeit. Basierend auf einer dimensionslosen Darstellung wird im ersten Teil der Arbeit in einer umfassenden Analyse das strukturelle Phasenverhalten einzelner Polyelektrolyt-Makroion-Komplexe behandelt. Der Schwerpunkt wird hier auf das Wechselspiel zwischen Effekten aufgrund der Polyelektrolytkettenlänge, ihrer mechanischen Persistenzlänge, der Salzkonzentration und der Ladung des Makroions gelegt. Die Ergebnisse werden in allgemeinen Phasendiagrammen zusammengestellt, das das Aufwickeln-Abwickeln-Verhalten der Polyelektrolytkette auf einem Makroion beschreibt. Ein Zustand mit komplett aufgewickelter Kette tritt typischerweise bei mittleren Salzkonzentrationen und Kettenlängen auf; häufig ist hier die auf dem Makroion adsorbierte Gesamtladung des Polyelektrolyts größ er als die Ladung des nackten Makroions, d.h. es findet in hohem Grad Ladungsinversion statt. Äußerst bemerkenswerte Eigenschaften treten auf, wenn eine einzelne lange Polyelektrolytkette viele, ihr entgegengesetzt geladene Kugeln komplexiert. In biologischen Systemen findet man solche Komplexe zwischen DNS, die die genetische Information einer Zelle trägt, und kleinen, entgegengesetzt geladenen Histonproteinen. Diese Komplexe dienen als effizienter Mechanismus, die groß e Menge an DNS im Mikrometer-groß en Zellkern eukaryotischer Zellen zu komprimieren. Die dadurch erhaltene komplexe Faser, eine Chromatinfaser, hat unter physiologischen Bedingungen einen Durchmesser von nur etwa 30~nm. Neue Experimente haben gezeigt, dass eine räumliche Zickzack-Anordnung einzelner DNA-Histon-Komplexe entlang der Chromatinfaser vorliegt. In der hier vorgelegten Arbeit wird eine numerische Methode vorgestellt, die auf einem einfachen Ketten-Kugel-Zell-Modell basiert und die die systematische Untersuchung des Mechnismus zur Faserbildung ermöglicht, wobei sowohl elektrostatische als auch elastische Wechselwirkungen berücksichtigt werden. Es wird gezeigt, dass stabile Komplexfasern in Abhängigkeit von der Salzkonzentration, der Kugelladung und der Kettenkonturlänge eine Vielfalt von Strukturen aufweisen, darunter Zickzack-, Solenoid- und Perlenkettenformen. Für physiologisch relevante Bedingungen werden mit dieser Methode für DNA-Histon-Komplexe Fasern kompakter Zickzack-Struktur mit einem Durchmesser von etwa 30~nm erhalten. Im folgenden Teil wird eine numerische Methode entwickelt, um den Einfluss thermischer Fluktuationen auf Struktur und thermodynamisches Phasenverhalten der Polyelektrolyt-Makroion-Komplexe zu untersuchen. Basierend auf der Sattelpunktsnäherung werden die experimentell beobachteten Reaktionsgleichgewichte in verdünnten Lösungen von Polyelektrolyten und Makroionen systematisch beschrieben. Das Gleichgewicht ist durch einen Verlust an Entropie für die einzelne Polyelektrolytkette durch die Bindung an das entgegengesetzt geladene Makroion gekennzeichnet. Diese Größ e wurde aus dem Spektrum der Polyelektrolytfluktuationen um das Makroion erhalten und mittels einer Analyse der Normalmoden berechnet. Hierüber wird ein Phasendiagramm zur Stabilität der Komplexe erhalten, das qualitativ gute Übereinstimmungen mit experimentellen Ergebnissen aufweist. Bei höheren Komplexkonzentrationen müssen auch die Wechselwirkungen zwischen den Komplexen berücksichtigt werden. Es wird gezeigt, dass sich die Struktur der Komplexe bei kleinen Abständen so ändert, dass positiv geladene Bereiche eines Komplexes mit negativ geladenen auf einem Nachbarkomplex räumlich korrelieren. Weiterhin können einzelne Polyelektrolytketten als verbrückendes Element zwischen zwei Komplexen dienen. Dieser Mechanismus führt zu starker effektiver Anziehung zwischen den Komplexen. In Übereinstimmung mit kürzlich durchgeführten Experimenten ist als Folge davon der zweite Virialkoeffizient der Wechselwirkung zwischen Komplexen bei mittleren Salzkonzentrationen negativ. KW - Biopolymere KW - Histon-DNS-Komplex KW - DNS-Bindungsproteine KW - DNS KW - Chromatin KW - Kolloides System KW - Kolloidphysik KW - Polyelektrolyt KW - geladene Systeme KW - Theorie KW - Polyelektrolytkomplexe KW - Chromatin KW - Histone-DNA Complexes KW - Charged Systems KW - Polyelectrolyte Complexes Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-6282 ER - TY - THES A1 - Kubowicz, Stephan T1 - Design and characterization of multicompartment micelles in aqueous solution T1 - Design und Charakterisierung von Multikompartiment-Mizellen in wässriger Lösung N2 - Self-assembly of polymeric building blocks is a powerful tool for the design of novel materials and structures that combine different properties and may respond to external stimuli. In the past decades, most studies were focused on the self-assembly of amphiphilic diblock copolymers in solution. The dissolution of these block copolymers in a solvent selective for one block results mostly in the formation of micelles. The micellar structure of diblock copolymers is inherently limited to a homogeneous core surrounded by a corona, which keeps the micelle in solution. Thus, for drug-delivery applications, such structures only offer a single domain (the hydrophobic inner core) for drug entrapment. Whereas multicompartment micelles composed of a water-soluble shell and a segregated hydrophobic core are novel, interesting morphologies for applications in a variety of fields including medicine, pharmacy and biotechnology. The separated incompatible compartments of the hydrophobic core could enable the selective entrapment and release of various hydrophobic drugs while the hydrophilic shell would permit the stabilization of these nanostructures in physiological media. However, so far, the preparation and control of stable multicompartment micellar systems are in the first stages and the number of morphological studies concerning such micelles is rather low. Thus considerably little is known about their exact inner structures. In the present study, we concentrate on four different approaches for the preparation of multicompartment micelles by self-assembly in aqueous media. A similarity of all approaches was that hydrocarbon and fluorocarbon blocks were selected for all employed copolymers since such segments tend to be strongly incompatible, and thus favor the segregation into distinct domains. Our studies have shown that the self-assembly of the utilized copolymers in aqueous solution leads in three cases to the formation of multicompartment micelles. As expected the shape and size of the micelles depend on the molecular architecture and to some extent also on the way of preparation. These novel structured colloids may serve as models as well as mimics for biological structures such as globular proteins, and may open interesting opportunities for nanotechnology applications. N2 - Die Selbstorganisation von synthetischen amphiphilen Blockcopolymeren ist ein vielseitiger Prozeß, der die Entwicklung von neuartigen Materialien, die verschiedene Eigenschaften miteinander verbinden und auch auf äußere Reize reagieren können, ermöglicht. In den letzten Jahrzehnten haben sich viele Untersuchungen mit der Selbstorganisation von Diblockcopolymeren in Lösung beschäftigt. So bilden zum Beispiel amphiphile Diblock-Copolymere in Wasser meist Mizellen die einen hydrophoben Kern und eine hydrophile Hülle besitzen. Ihre potentielle Anwendung als Wirkstoffträger ist jedoch begrenzt, da für die Einlagerung nur ein hydrophober Bereich zur Verfügung steht. Multikompartment-Mizellen, bestehend aus einer wasserlöslichen Hülle und einem unterteilten hydrophoben Kern, sind dagegen neuartige und sehr interessante Strukturen für die Nanotechnologie und im speziellen für die Nanobiotechnologie, da sie sich zum Beispiel als Träger für Arznei- und Wirkstoffe eignen. So könnten in die separaten und untereinander nicht mischbaren Kompartimente im Kern der Mizelle verschiedene hydrophobe Wirkstoffe selektiv eingelagert und auch freigesetzt werden, wobei die hydrophile Hülle die Nanostrukturen im physiologischen Medium stabilisiert. Aus diesem Grund wurden in den letzten Jahren verschiedene Strategien für die Herstellung von Multikompartiment-Mizellen vorgeschlagen. Bis jetzt gibt es jedoch nur eine begrenzte Anzahl an Untersuchungen, die sich mit der Morphologie solcher Mizellen befassen und somit ist auch wenig über ihre innere Struktur bekannt. In der vorliegenden Arbeit konzentrieren wir uns auf vier verschiedene Ansätze zur Herstellung von Multikompartiment-Mizellen durch Selbstorganisation in wässriger Lösung. Eine Gemeinsamkeit bei allen Ansätzen ist, das die untersuchten Copolymere einen hydrophoben Kohlenwasserstoff-Block sowie einen Fluorkohlenstoff-Block besitzen. Die Kombination von Kohlenwasserstoff- und Fluorkohlenstoff-Blöcken wurden gewählt, weil solche Segmente in der Regel nicht miteinander kompatibel sind und somit die Aufteilung in separate Domänen begünstigen. Unsere Untersuchungen haben gezeigt, dass die Selbstorganisation der verwendeten Copolymere in wässriger Lösung in drei Fällen zu Multikompartiment-Mizellen führt. Die Form und Größe der Mizellen ist erwartungsgemäß von der Molekülarchitektur und zum Teil auch vom Präparationsweg abhängig. Diese neuartigen, nanostrukturierten Kolloide könnten als Modell und Mimetika für biologische Strukturen wie die von globulären Proteinen fungieren. Sie eröffnen weiterhin interessante Möglichkeiten für Anwendungen in der Nanotechnologie. T2 - Design and characterization of multicompartment micelles in aqueous solution KW - Amphiphile Verbindungen KW - Blockcopolymere KW - Micelle KW - Selbstorganisation KW - Kolloides System KW - Kolloid / Lösung KW - amphiphiles KW - block copolymers KW - colloids KW - micelles KW - self-assembly Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5752 ER -