TY - THES A1 - Calitri, Francesca T1 - Co-evolution of erosion rates, weathering and profile development in soil landscapes of hummocky ground moraines N2 - Soil is today considered a non-renewable resource on societal time scale, as the rate of soil loss is higher than the one of soil formation. Soil formation is complex, can take several thousands of years and is influenced by a variety of factors, one of them is time. Oftentimes, there is the assumption of constant and progressive conditions for soil and/or profile development (i.e., steady-state). In reality, for most of the soils, their (co-)evolution leads to a complex and irregular soil development in time and space characterised by “progressive” and “regressive” phases. Lateral transport of soil material (i.e., soil erosion) is one of the principal processes shaping the land surface and soil profile during “regressive” phases and one of the major environmental problems the world faces. Anthropogenic activities like agriculture can exacerbate soil erosion. Thus, it is of vital importance to distinguish short-term soil redistribution rates (i.e., within decades) influenced by human activities differ from long-term natural rates. To do so, soil erosion (and denudation) rates can be determined by using a set of isotope methods that cover different time scales at landscape level. With the aim to unravel the co-evolution of weathering, soil profile development and lateral redistribution on a landscape level, we used Pluthonium-239+240 (239+240Pu), Beryllium-10 (10Be, in situ and meteoric) and Radiocarbon (14C) to calculate short- and long-term erosion rates in two settings, i.e., a natural and an anthropogenic environment in the hummocky ground moraine landscape of the Uckermark, North-eastern Germany. The main research questions were: 1. How do long-term and short-term rates of soil redistributing processes differ? 2. Are rates calculated from in situ 10Be comparable to those of using meteoric 10Be? 3. How do soil redistribution rates (short- and long-term) in an agricultural and in a natural landscape compare to each other? 4. Are the soil patterns observed in northern Germany purely a result of past events (natural and/or anthropogenic) or are they imbedded in ongoing processes? Erosion and deposition are reflected in a catena of soil profiles with no or almost no erosion on flat positions (hilltop), strong erosion on the mid-slope and accumulation of soil material at the toeslope position. These three characteristic process domains were chosen within the CarboZALF-D experimental site, characterised by intense anthropogenic activities. Likewise, a hydrosequence in an ancient forest was chosen for this study and being regarded as a catena strongly influenced by natural soil transport. The following main results were obtained using the above-mentioned range of isotope methods available to measure soil redistribution rates depending on the time scale needed (e.g., 239+240Pu, 10Be, 14C): 1. Short-term erosion rates are one order of magnitude higher than long-term rates in agricultural settings. 2. Both meteoric and in situ 10Be are suitable soil tracers to measure the long-term soil redistribution rates giving similar results in an anthropogenic environment for different landscape positions (e.g., hilltop, mid-slope, toeslope) 3. Short-term rates were extremely low/negligible in a natural landscape and very high in an agricultural landscape – -0.01 t ha-1 yr-1 (average value) and -25 t ha-1 yr-1 respectively. On the contrary, long-term rates in the forested landscape are comparable to those calculated in the agricultural area investigated with average values of -1.00 t ha-1 yr-1 and -0.79 t ha-1 yr-1. 4. Soil patterns observed in the forest might be due to human impact and activities started after the first settlements in the region, earlier than previously postulated, between 4.5 and 6.8 kyr BP, and not a result of recent soil erosion. 5. Furthermore, long-term soil redistribution rates are similar independently from the settings, meaning past natural soil mass redistribution processes still overshadow the present anthropogenic erosion processes. Overall, this study could make important contributions to the deciphering of the co-evolution of weathering, soil profile development and lateral redistribution in North-eastern Germany. The multi-methodological approach used can be challenged by the application in a wider range of landscapes and geographic regions. N2 - Boden wird heute im gesellschaftlichen Zeitmaßstab als nicht erneuerbare Ressource angesehen, da die Geschwindigkeit des Bodenverlusts höher ist als die der Bodenbildung. Bodenbildung ist komplex, kann mehrere tausend Jahre dauern und wird von einer Vielzahl von Faktoren beeinflusst, unter anderem Zeit. Häufig wird von konstanten und fortschreitenden Bedingungen für die Boden- und/oder Profilentwicklung (d. h. «Steady-State») ausgegangen. Tatsächlich führt ihre (Co-)Evolution bei den meisten Böden zu einer komplexen und zeitlich und räumlich unregelmäßigen Bodenentwicklung, die durch „progressive“ und „regressive“ Phasen gekennzeichnet ist. Der laterale Transport von Bodenmaterial (d. h. Bodenerosion) ist einer der Hauptprozesse, der die Landoberfläche und das Bodenprofil während „rückläufiger“ Phasen bilden, und eines der größten Umweltprobleme, mit denen die Welt konfrontiert ist. Anthropogene Aktivitäten wie die Landwirtschaft können die Bodenerosion verstärken. Daher ist es von entscheidender Bedeutung, kurzfristige Bodenumverteilungsraten (d. h. innerhalb von Jahrzehnten), die durch menschliche Aktivitäten beeinflusst werden, von langfristigen natürlichen Raten zu unterscheiden. Zu diesem Zweck können Bodenerosions- (und Denudations-) Raten mithilfe einer Reihe von Isotopenmethoden bestimmt werden, die verschiedene Zeitskalen auf Landschaftsebene abdecken. Mit dem Ziel, die Co-Evolution von Verwitterung, Bodenprofilentwicklung und lateraler Umverteilung auf Landschaftsebene aufzuklären, verwendeten wir Plutonium-239+240 (239+240Pu), Beryllium-10 (10Be, in situ und meteorisch) und Radiokohlenstoff (14C) zur Berechnung kurz- und langfristiger Erosionsraten in zwei Umgebungen: einer natürlichen und einer anthropogenen Umgebung in der hügeligen Grundmoränenlandschaft der Uckermark in Nordostdeutschland. Die wichtigsten Forschungsfragen waren: 1. Wie unterscheiden sich langfristige und kurzfristige Raten von Bodenumverteilungsprozessen? 2. Sind die aus in situ 10Be berechneten Raten vergleichbar mit denen der Verwendung von meteorischem 10Be? 3. Wie verhalten sich Bodenumlagerungsraten (kurz- und langfristig) in einer Agrar- und in einer Naturlandschaft zueinander? 4. Sind die in Norddeutschland beobachteten Bodenmuster reine Folge vergangener Ereignisse (natürlich und/oder anthropogen) oder sind sie in laufende Prozesse eingebettet? Erosion und Ablagerung spiegeln sich in einer Kette von Bodenprofilen mit keiner oder fast keiner Erosion auf flachen Positionen (Hügelkuppe), starker Erosion auf der Hangmitte und Anhäufung von Bodenmaterial am Hangfuss wider. Diese drei charakteristischen Prozessdomänen wurden innerhalb des CarboZALF-D-Versuchsstandorts ausgewählt, der durch intensive anthropogene Aktivitäten gekennzeichnet ist. Ebenso wurde für diese Studie eine Hydrosequenz in einem alten Wald ausgewählt, die als stark vom natürlichen Bodentransport beeinflusste Catena angesehen wird. Die folgenden Hauptergebnisse wurden unter Verwendung der oben erwähnten Reihe von Isotopenmethoden erzielt, die zur Messung der Bodenumverteilungsraten in Abhängigkeit von der erforderlichen Zeitskala (z. B. 239+240Pu, 10Be, 14C) verfügbar sind: 1. Im landwirtschaftlichen Umfeld sind kurzfristige Erosionsraten eine Größenordnung höher als langfristige Raten. 2. Sowohl meteorisches als auch in situ 10Be sind geeignete Bodenindikatoren, um die langfristigen Bodenumverteilungsraten zu messen. Sie liefern ähnliche Ergebnisse in einer anthropogenen Umgebung für verschiedene Landschaftspositionen (z. B. Hügelkuppe, Mittelhang, Hangfuss). 3. Die Kurzzeitraten waren in einer Naturlandschaft extrem niedrig/vernachlässigbar und in einer Agrarlandschaft sehr hoch – -0,01 t ha-1 Jahr-1 (Durchschnittswert) bzw. -25 t ha-1 Jahr- 1. Im Gegensatz dazu sind die langjährigen Belastungen in der Waldlandschaft vergleichbar mit den berechneten in der untersuchten landwirtschaftlichen Fläche mit Durchschnittswerten von -1,00 t ha-1 Jahr-1 und -0,79 t ha-1 Jahr-1. 4. Die im Wald beobachteten Bodenmuster könnten auf menschliche Einflüsse und Aktivitäten zurückzuführen sein, die nach den ersten Siedlungen in der Region begannen, und nicht auf die jüngste Bodenerosion. Diese Aktivitäten könnten früher als zuvor angenommen, zwischen 2’500 und 4’800 Jahren vor Christus, erfolgt sein. 5. Darüber hinaus sind die langfristigen Bodenumverteilungsraten unabhängig vom Umfeld ähnlich, was bedeutet, dass vergangene natürliche Bodenmassenumverteilungsprozesse immer noch die gegenwärtigen anthropogenen Erosionsprozesse überschatten. Insgesamt konnte diese Studie wichtige Beiträge zur Entschlüsselung der Co-Evolution von Verwitterung, Bodenprofilentwicklung und lateraler Umverteilung in Nordostdeutschland leisten. Der verwendete multimethodische Ansatz kann durch die Anwendung in einem breiteren Spektrum von Landschaften und geografischen Regionen herausgefordert werden. T2 - Co-Evolution von Erosionsraten, Verwitterung und Profilentwicklung in Bodenlandschaften hügeliger Grundmoränen KW - soil erosion KW - 239+240Plutonium KW - 10Be KW - Agricultural soils KW - Forest KW - Bodenerosion KW - 239+240Plutonium KW - 10Be KW - Landwirtschaftlicher Böden KW - Wald Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-601387 ER - TY - JOUR A1 - Calitri, Francesca A1 - Sommer, Michael A1 - van der Meij, Marijn W. A1 - Egli, Markus T1 - Soil erosion along a transect in a forested catchment: recent or ancient processes? JF - Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution N2 - Forested areas are assumed not to be influenced by erosion processes. However, forest soils of Northern Germany in a hummocky ground moraine landscape can sometimes exhibit a very shallow thickness on crest positions and buried soils on slope positions. The question consequently is: Are these on-going or ancient erosional and depositional processes? Plutonium isotopes act as soil erosion/deposition tracers for recent (last few decades) processes. Here, we quantified the 239+240PU inventories in a small, forested catchment (ancient forest "Melzower Forst", deciduous trees), which is characterised by a hummocky terrain including a kettle hole. Soil development depths (depth to C horizon) and 239+240PU inventories along a catena of sixteen different profiles were determined and correlated to relief parameters. Moreover, we compared different modelling approaches to derive erosion rates from Pu data.
We find a strong relationship between soil development depths, distance-to-sink and topography along the catena. Fully developed Retisols (thicknesses > 1 m) in the colluvium overlay old land surfaces as documented by fossil Ah horizons. However, we found no relationship of Pu-based erosion rates to any relief parameter. Instead, 239+240PU inventories showed a very high local, spatial variability (36-70 Bq m(-2)). Low annual rainfall, spatially distributed interception and stem flow might explain the high variability of the 239+240PU inventories, giving rise to a patchy input pattern. Different models resulted in quite similar erosion and deposition rates (max: -5 t ha(-1) yr(-1) to +7.3 t ha(-1) yr(-1)). Although some rates are rather high, the magnitude of soil erosion and deposition - in terms of soil thickness change - is negligible during the last 55 years. The partially high values are an effect of the patchy Pu deposition on the forest floor. This forest has been protected for at least 240 years. Therefore rather natural events and anthropogenic activities during medieval times or even earlier must have caused the observed soil pattern, which documents strong erosion and deposition processes. KW - Soil erosion KW - 239+240 Plutonium KW - Forest KW - Moraine landscape KW - Soil catena Y1 - 2020 U6 - https://doi.org/10.1016/j.catena.2020.104683 SN - 0341-8162 SN - 1872-6887 VL - 194 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Haßler, Sibylle Kathrin A1 - Zimmermann, Beate A1 - van Breugel, Michiel A1 - Hall, Jefferson S. A1 - Elsenbeer, Helmut T1 - Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics JF - Forest ecology and management N2 - Landscapes in the humid tropics are undergoing a continuous change in land use. Deforestation is still taking its toll on forested areas, but at the same time more and more secondary forests emerge where formerly agricultural lands and pastures are being abandoned. Regarding soil hydrology, the extent to which secondary succession can recover soil hydrological properties disturbed by antecedent deforestation and pasture use is yet poorly understood. We investigated the effect of secondary succession on saturated hydraulic conductivity (Ks) at two soil depths (0-6 and 6-12 cm) using a space-for-time approach in a landscape mosaic in central Panama. The following four land-use classes were studied: pasture (P), secondary forest of 5-8 years of age (SF5), secondary forest of 12-15 years of age (SF12) and secondary forest of more than 100 years of age (SF100), each replicated altogether four times in different micro-catchments across the study region. The hydrological implications of differences in Ks in response to land-use change with land use, especially regarding overland flow generation, were assessed via comparisons with rainfall intensities. Recovery of Ks could be detected in the 0-6 cm depth after 12 years of secondary succession: P and SF5 held similar Ks values, but differed significantly (alpha = 0.05) from SF12 and SF100 which in turn were indistinguishable. Variability within the land cover classes was large but, due to sufficient replication in the study, Ks recovery could be detected nonetheless. Ks in the 6-12 cm depth did not show any differences between the land cover classes; only Ks of the uppermost soil layer was affected by land-use changes. Overland flow - as inferred from comparisons of Ks with rainfall intensities - is more likely on P and SF5 sites compared to SF12 and 5E100 for the upper sample depth; however, generally low values at the 6-12 cm depth are likely to impede vertical percolation during high rainfall intensities regardless of land use. We conclude that Ks can recover from pasture use under secondary succession up to pre-pasture levels, but the process may take more than 8 years. In order to gain comprehensive understanding of Ks change with land use and its hydrological implications, more studies with detailed land-use histories and combined measurements of Ks, overland flow, precipitation and throughfall are essential. KW - Land cover change KW - Forest KW - Land use KW - Overland flow KW - Soil hydrology KW - Ecosystem services Y1 - 2011 U6 - https://doi.org/10.1016/j.foreco.2010.06.031 SN - 0378-1127 SN - 1872-7042 VL - 261 IS - 10 SP - 1634 EP - 1642 PB - Elsevier CY - Amsterdam ER -