TY - JOUR A1 - Bernhardt-Römermann, Markus A1 - Baeten, Lander A1 - Craven, Dylan A1 - De Frenne, Pieter A1 - Hedl, Radim A1 - Lenoir, Jonathan A1 - Bert, Didier A1 - Brunet, Jorg A1 - Chudomelova, Marketa A1 - Decocq, Guillaume A1 - Dierschke, Hartmut A1 - Dirnboeck, Thomas A1 - Dörfler, Inken A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Jaroszewicz, Bogdan A1 - Keczynski, Andrzej A1 - Kelly, Daniel L. A1 - Kirby, Keith J. A1 - Kopecky, Martin A1 - Macek, Martin A1 - Malis, Frantisek A1 - Mirtl, Michael A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Peterken, George A1 - Petrik, Petr A1 - Schmidt, Wolfgang A1 - Standovar, Tibor A1 - Toth, Zoltan A1 - Van Calster, Hans A1 - Verstraeten, Gorik A1 - Vladovic, Jozef A1 - Vild, Ondrej A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Drivers of temporal changes in temperate forest plant diversity vary across spatial scales JF - Global change biology N2 - Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions. KW - atmospheric nitrogen deposition KW - evenness KW - forestREplot KW - forest management KW - game browsing KW - Shannon diversity KW - spatiotemporal resurvey data KW - species richness Y1 - 2015 U6 - https://doi.org/10.1111/gcb.12993 SN - 1354-1013 SN - 1365-2486 VL - 21 IS - 10 SP - 3726 EP - 3737 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Caron, Maria Mercedes A1 - De Frenne, P. A1 - Brunet, J. A1 - Chabrerie, Olivier A1 - Cousins, S. A. O. A1 - De Backer, L. A1 - Diekmann, M. A1 - Graae, B. J. A1 - Heinken, Thilo A1 - Kolb, A. A1 - Naaf, T. A1 - Plue, J. A1 - Selvi, F. A1 - Strimbeck, G. R. A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Latitudinal variation in seeds characteristics of Acer platanoides and A. pseudoplatanus JF - Plant ecology : an international journal N2 - Climate change will likely affect population dynamics of numerous plant species by modifying several aspects of the life cycle. Because plant regeneration from seeds may be particularly vulnerable, here we assess the possible effects of climate change on seed characteristics and present an integrated analysis of seven seed traits (nutrient concentrations, samara mass, seed mass, wing length, seed viability, germination percentage, and seedling biomass) of Acer platanoides and A. pseudoplatanus seeds collected along a wide latitudinal gradient from Italy to Norway. Seed traits were analyzed in relation to the environmental conditions experienced by the mother trees along the latitudinal gradient. We found that seed traits of A. platanoides were more influenced by the climatic conditions than those of A. pseudoplatanus. Additionally, seed viability, germination percentage, and seedling biomass of A. platanoides were strongly related to the seed mass and nutrient concentration. While A. platanoides seeds were more influenced by the environmental conditions (generally negatively affected by rising temperatures), compared to A. pseudoplatanus, A. platanoides still showed higher germination percentage and seedling biomass than A. pseudoplatanus. Thus, further research on subsequent life-history stages of both species is needed. The variation in seed quality observed along the climatic gradient highlights the importance of studying the possible impact of climate change on seed production and species demography. KW - Acer platanoides KW - Acer pseudoplatanus KW - Climate change KW - Seed traits KW - Latitudinal gradient Y1 - 2014 U6 - https://doi.org/10.1007/s11258-014-0343-x SN - 1385-0237 SN - 1573-5052 VL - 215 IS - 8 SP - 911 EP - 925 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Caron, Maria Mercedes A1 - De Frenne, Pieter A1 - Brunet, J. A1 - Chabrerie, Olivier A1 - Cousins, S. A. O. A1 - De Backer, L. A1 - Decocq, G. A1 - Diekmann, M. A1 - Heinken, Thilo A1 - Kolb, A. A1 - Naaf, T. A1 - Plue, J. A1 - Selvi, Federico A1 - Strimbeck, G. R. A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides JF - Plant biology N2 - Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life-cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A.platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200-km long latitudinal gradient. For most of the responses, A.platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A.platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A.pseudoplatanus in the face of climate change. KW - Acer platanoides KW - Acer pseudoplatanus KW - climate change KW - drought KW - reproduction KW - seed KW - temperature Y1 - 2015 U6 - https://doi.org/10.1111/plb.12177 SN - 1435-8603 SN - 1438-8677 VL - 17 IS - 1 SP - 52 EP - 62 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Caron, Maria Mercedes A1 - De Frenne, Pieter A1 - Brunet, Jörg A1 - Chabrerie, Olivier A1 - Cousins, Sara A. O. A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Graae, Bente Jessen A1 - Heinken, Thilo A1 - Kolb, Annette A1 - Lenoir, Jonathan A1 - Naaf, Tobias A1 - Plue, Jan A1 - Selvi, Federico A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Divergent regeneration responses of two closely related tree species to direct abiotic and indirect biotic effects of climate change JF - Forest ecology and management N2 - Changing temperature and precipitation can strongly influence plant reproduction. However, also biotic interactions might indirectly affect the reproduction and recruitment success of plants in the context of climate change. Information about the interactive effects of changes in abiotic and biotic factors is essential, but still largely lacking, to better understand the potential effects of a changing climate on plant populations. Here we analyze the regeneration from seeds of Acer platanoides and Acer pseudoplatanus, two currently secondary forest tree species from seven regions along a 2200 km-wide latitudinal gradient in Europe. We assessed the germination, seedling survival and growth during two years in a common garden experiment where temperature, precipitation and competition with the understory vegetation were manipulated. A. platanoides was more sensitive to changes in biotic conditions while A. pseudoplatanus was affected by both abiotic and biotic changes. In general, competition reduced (in A. platanoides) and warming enhanced (in A. pseudoplatanus) germination and survival, respectively. Reduced competition strongly increased the growth of A. platanoides seedlings. Seedling responses were independent of the conditions experienced by the mother tree during seed production and maturation. Our results indicate that, due to the negative effects of competition on the regeneration of A. platanoides, it is likely that under stronger competition (projected under future climatic conditions) this species will be negatively affected in terms of germination, survival and seedling biomass. Climate-change experiments including both abiotic and biotic factors constitute a key step forward to better understand the response of tree species' regeneration to climate change. (C) 2015 Elsevier B.V. All rights reserved. KW - Acer KW - Regeneration KW - Latitudinal gradient KW - Temperature KW - Precipitation KW - Competition Y1 - 2015 U6 - https://doi.org/10.1016/j.foreco.2015.01.003 SN - 0378-1127 SN - 1872-7042 VL - 342 SP - 21 EP - 29 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - De Frenne, Pieter A1 - Baeten, Lander A1 - Graae, Bente J. A1 - Brunet, Jorg A1 - Wulf, Monika A1 - Orczewska, Anna A1 - Kolb, Annette A1 - Jansen, Ivy A1 - Jamoneau, Aurelien A1 - Jacquemyn, Hans A1 - Hermy, Martin A1 - Diekmann, Martin A1 - De Schrijver, An A1 - De Sanctis, Michele A1 - Decocq, Guillaume A1 - Cousins, Sara A. O. A1 - Verheyen, Kris T1 - Interregional variation in the floristic recovery of post-agricultural forests JF - The journal of ecology N2 - 1. Worldwide, the floristic composition of temperate forests bears the imprint of past land use for decades to centuries as forests regrow on agricultural land. Many species, however, display significant interregional variation in their ability to (re)colonize post-agricultural forests. This variation in colonization across regions and the underlying factors remain largely unexplored. 2. We compiled data on 90 species and 812 species x study combinations from 18 studies across Europe that determined species' distribution patterns in ancient (i.e. continuously forested since the first available land use maps) and post-agricultural forests. The recovery rate (RR) of species in each landscape was quantified as the log-response ratio of the percentage occurrence in post-agricultural over ancient forest and related to the species-specific life-history traits and local (soil characteristics and light availability) and regional factors (landscape properties as habitat availability, time available for colonization, and climate). 3. For the herb species, we demonstrate a strong (interactive) effect of species' life-history traits and forest habitat availability on the RR of post-agricultural forest. In graminoids, however, none of the investigated variables were significantly related to the RR. 4. The better colonizing species that mainly belonged to the short-lived herbs group showed the largest interregional variability. Their recovery significantly increased with the amount of forest habitat within the landscape, whereas, surprisingly, the time available for colonization, climate, soil characteristics and light availability had no effect. 5. Synthesis. By analysing 18 independent studies across Europe, we clearly showed for the first time on a continental scale that the recovery of short-lived forest herbs increased with the forest habitat availability in the landscape. Small perennial forest herbs, however, were generally unsuccessful in colonizing post-agricultural forest even in relatively densely forested landscapes. Hence, our results stress the need to avoid ancient forest clearance to preserve the typical woodland flora. KW - ancient forest KW - colonization capacity KW - forest herbs KW - functional traits KW - habitat fragmentation KW - habitat loss KW - life-history traits KW - meta-analysis KW - plant population and community dynamics KW - secondary succession Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2745.2010.01768.x SN - 0022-0477 VL - 99 IS - 2 SP - 600 EP - 609 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - De Frenne, Pieter A1 - Rodriguez-Sanchez, Francisco A1 - Coomes, David Anthony A1 - Bäten, Lander A1 - Versträten, Gorik A1 - Vellend, Mark A1 - Bernhardt-Römermann, Markus A1 - Brown, Carissa D. A1 - Brunet, Jörg A1 - Cornelis, Johnny A1 - Decocq, Guillaume M. A1 - Dierschke, Hartmut A1 - Eriksson, Ove A1 - Gilliam, Frank S. A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hermy, Martin A1 - Hommel, Patrick A1 - Jenkins, Michael A. A1 - Kelly, Daniel L. A1 - Kirby, Keith J. A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Peterken, George A1 - Petrik, Petr A1 - Schultz, Jan A1 - Sonnier, Gregory A1 - Van Calster, Hans A1 - Waller, Donald M. A1 - Walther, Gian-Reto A1 - White, Peter S. A1 - Woods, Kerry D. A1 - Wulf, Monika A1 - Graae, Bente Jessen A1 - Verheyen, Kris T1 - Microclimate moderates plant responses to macroclimate warming JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity. KW - climate change KW - forest management KW - understory KW - climatic debt KW - range shifts Y1 - 2013 U6 - https://doi.org/10.1073/pnas.1311190110 SN - 0027-8424 VL - 110 IS - 46 SP - 18561 EP - 18565 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - De Lombaerde, Emiel A1 - Verheyen, Kris A1 - Perring, Michael P. A1 - Bernhardt-Roemermann, Markus A1 - Van Calster, Hans A1 - Brunet, Jorg A1 - Chudomelova, Marketa A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Durak, Tomasz A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hommel, Patrick A1 - Jaroszewicz, Bogdan A1 - Kopecky, Martin A1 - Lenoir, Jonathan A1 - Macek, Martin A1 - Máliš, František A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Petřík, Petr A1 - Reczyńska, Kamila A1 - Schmidt, Wolfgang A1 - Swierkosz, Krzysztof A1 - Vild, Ondrej A1 - Wulf, Monika A1 - Baetena, Lander T1 - Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes JF - Basic and applied ecology : Journal of the Gesellschaft für Ökologie N2 - Understorey plant communities play a key role in the functioning of forest ecosystems. Under favourable environmental conditions, competitive understorey species may develop high abundances and influence important ecosystem processes such as tree regeneration. Thus, understanding and predicting the response of competitive understorey species as a function of changing environmental conditions is important for forest managers. In the absence of sufficient temporal data to quantify actual vegetation changes, space-for-time (SFT) substitution is often used, i.e. studies that use environmental gradients across space to infer vegetation responses to environmental change over time. Here we assess the validity of such SFT approaches and analysed 36 resurvey studies from ancient forests with low levels of recent disturbances across temperate Europe to assess how six competitive understorey plant species respond to gradients of overstorey cover, soil conditions, atmospheric N deposition and climatic conditions over space and time. The combination of historical and contemporary surveys allows (i) to test if observed contemporary patterns across space are consistent at the time of the historical survey, and, crucially, (ii) to assess whether changes in abundance over time given recorded environmental change match expectations from patterns recorded along environmental gradients in space. We found consistent spatial relationships at the two periods: local variation in soil variables and overstorey cover were the best predictors of individual species’ cover while interregional variation in coarse-scale variables, i.e. N deposition and climate, was less important. However, we found that our SFT approach could not accurately explain the large variation in abundance changes over time. We thus recommend to be cautious when using SFT substitution to infer species responses to temporal changes. KW - Temperate forest KW - Herb layer KW - Tree regeneration KW - Global change KW - Nitrogen deposition KW - Canopy KW - Spatiotemporal resurvey data KW - Cover abundance KW - Chronosequence KW - forestREplot Y1 - 2018 U6 - https://doi.org/10.1016/j.baae.2018.05.013 SN - 1439-1791 SN - 1618-0089 VL - 30 SP - 52 EP - 64 PB - Elsevier GMBH CY - München ER - TY - JOUR A1 - Kernecker, Maria A1 - Fienitz, Meike A1 - Nendel, Claas A1 - Paetzig, Marlene A1 - Walzl, Karin Pirhofer A1 - Raatz, Larissa A1 - Schmidt, Martin A1 - Wulf, Monika A1 - Zscheischler, Jana T1 - Transition zones across agricultural field boundaries for integrated landscape research and management of biodiversity and yields JF - Ecological solutions and evidence N2 - Biodiversity conservation and agricultural production have been largely framed as separate goals for landscapes in the discourse on land use. Although there is an increasing tendency to move away from this dichotomy in theory, the tendency is perpetuated by the spatially explicit approaches used in research and management practice. Transition zones (TZ) have previously been defined as areas where two adjacent fields or patches interact, and so they occur abundantly throughout agricultural landscapes. Biodiversity patterns in TZ have been extensively studied, but their relationship to yield patterns and social-ecological dimensions has been largely neglected. Focusing on European, temperate agricultural landscapes, we outline three areas of research and management that together demonstrate how TZ might be used to facilitate an integrated landscape approach: (i) plant and animal species' use and response to boundaries and the resulting effects on yield, for a deeper understanding of how landscape structure shapes quantity and quality of TZ; (ii) local knowledge on field or patch-level management and its interactions with biodiversity and yield in TZ, and (iii) conflict prevention and collaborative management across land-use boundaries. KW - ecotones KW - field boundaries KW - functional traits KW - landscape complexity; KW - land-use conflicts KW - local knowledge KW - spillovers Y1 - 2022 U6 - https://doi.org/10.1002/2688-8319.12122 SN - 2688-8319 VL - 3 IS - 1 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kolk, Jens A1 - Naaf, Tobias A1 - Wulf, Monika T1 - Paying the colonization credit BT - converging plant species richness in ancient and post-agricultural forests in NE Germany over five decades JF - Biodiversity and conservation N2 - Massive historical land cover changes in the Central European lowlands have resulted in a forest distribution that now comprises small remnants of ancient forests and more recently established post-agricultural forests. Here, land-use history is considered a key driver of recent herb-layer community changes, where an extinction debt in ancient forest remnants and/or a colonization credit in post-agricultural forests are being paid over time. On a regional scale, these payments should in theory lead toward a convergence in species richness between ancient and post-agricultural forests over time. In this study, we tested this assumption with a resurvey of 117 semi-permanent plots in the well-studied deciduous forests of the Prignitz region (Brandenburg, NE Germany), where we knew that the plant communities of post-agricultural stands exhibit a colonization credit while the extinction debt in ancient stands has largely been paid. We compared changes in the species richness of all herb layer species, forest specialists and ancient forest indicator species between ancient and post-agricultural stands with linear mixed effect models and determined the influence of patch connectivity on the magnitude of species richness changes. Species richness increased overall, but the richness of forest specialists increased significantly more in post-agricultural stands and was positively influenced by higher patch connectivity, indicating a convergence in species richness between the ancient and postagricultural stands. Furthermore, the richness of ancient forest indicator species only increased significantly in post-agricultural stands. For the first time, we were able to verify a gradual payment of the colonization credit in post-agricultural forest stands using a comparison of actual changes in temporal species richness. KW - Herb layer KW - Land-use history KW - Land-use legacy KW - Long-term change KW - Resurvey KW - Temperate forest Y1 - 2016 U6 - https://doi.org/10.1007/s10531-016-1271-y SN - 0960-3115 SN - 1572-9710 VL - 26 SP - 735 EP - 755 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Leuschner, Christoph A1 - Wulf, Monika A1 - Baeuchler, Patricia A1 - Hertel, Dietrich T1 - Forest continuity as a key determinant of soil carbon and nutrient storage in beech forests on sandy soils in Northern Germany JF - Ecosystems N2 - Forest (or tree) age has been identified as an important determinant of the carbon (C) storage potential of forest soils. A large part of Central Europe's current forested area was affected by land use change with long periods of cultivation in past centuries suggesting that the organic C stocks in the soil (SOC) under recent forest may partly be legacies of the past and that stand age effects have to be distinguished from forest continuity effects (that is, the time since re-afforestation). We examined the influence of mean tree age and forest continuity on the SOC pool and the stores of total N and available P, Ca, Mg, and K in the soil (mineral soil and organic layer) across a sample of 14 beech (Fagus sylvatica) forests on sandy soil with variable tree age (23-189 years) and forest continuity (50-year-old afforestation to ancient ('permanent') forest, that is, > 230 years of proven continuity). Ancient beech forests (> 230 years of continuity) stored on average 47 and 44% more organic C and total N in the soil than recent beech afforestation (50-128 years of continuity). Contrary to expectation, we found large and significant C and N pool differences between the forest categories in the mineral soil but not in the organic layer indicating that decade- or century-long cultivation has reduced the subsoil C and nutrient stores while the organic layer element pools have approached a new equilibrium after only 50-128 years. PCA and correlation analyses suggest that forest continuity cannot be ignored when trying to understand the variation in soil C stocks between different stands. Forest clearing, subsequent cultivation, and eventual re-afforestation with beech resulted in similar relative stock reductions of C and N and, thus, no change in soil C/N ratio. We conclude that the continuity of forest cover, which may or may not be related to tree age, is a key determinant of the soil C and nutrient stores of beech forests in the old cultural landscape of Central Europe. KW - afforestation KW - ancient forests KW - available phosphorus KW - calcium KW - Fagus sylvatica KW - forest clear-cut KW - magnesium KW - nitrogen KW - potassium KW - sandy soil Y1 - 2014 U6 - https://doi.org/10.1007/s10021-013-9738-0 SN - 1432-9840 SN - 1435-0629 VL - 17 IS - 3 SP - 497 EP - 511 PB - Springer CY - New York ER -