TY - JOUR A1 - Burns, Bruce D. A1 - Vollmeyer, Regina T1 - Goal specificity effets on hypothesis testing in problem solving Y1 - 2002 SN - 0272-4987 ER - TY - JOUR A1 - Burns, Bruce D. A1 - Vollmeyer, Regina T1 - Modeling the opponent facilitates adverserial problem solving Y1 - 1998 ER - TY - JOUR A1 - Burns, Bruce D. A1 - Vollmeyer, Regina T1 - Modeling the adversary and success in competition Y1 - 1998 ER - TY - JOUR A1 - Burns, Bruce D. A1 - Vollmeyer, Regina T1 - Goals and problem solving : learning as search of three spaces Y1 - 1996 ER - TY - JOUR A1 - Burns, Bruce D. A1 - Vollmeyer, Regina T1 - Problem solving : phenomena in search of a thesis Y1 - 2000 SN - 0-8058-3879-1 ER - TY - GEN A1 - Engeser, Stefan A1 - Rheinberg, Falko A1 - Vollmeyer, Regina A1 - Bischoff, Jutta T1 - Motivation, Flow-Erleben und Lernleistung in universitären Lernsettings T1 - Motivation, flow-experience and achievement in learning settings at university N2 - Im kognitiv-motivationalen Prozessmodell des Lernens wird angenommen, dass der Lernerfolg von der Qualität und der Dauer ausgeführter Lernaktivitäten, aber auch vom Funktionszustand des Lerners während der Lernphase abhängt. Es wird vermutet, dass eine von mehreren Variablen des Funktionszustandes der Flow-Zustand während des Lernens ist. In einer Untersuchung in universitären Fremdsprachenkursen zeigte sich in der Tat, dass Flow-Erleben während des Unterrichts die späteren Lernleistungen auch dann vorhersagt, wenn der Leistungseffekt relevanter Lernkompetenzvariablen vorweg berücksichtigt wird. Gemäß dem kognitiv-motivationalen Prozessmodell wird Flow-Erleben seinerseits über die aktuelle Motivation vor der Lernphase vorhergesagt, wobei die wiederum von einer allgemeineren Motivationsvariablen zu Semesterbeginn abhängt. Diese Struktur wurde in einer zweiten Untersuchung repliziert und zwar an Studenten im Verlauf ihrer Statistikausbildung im Fach Psychologie. Beide Ergebnisse sprechen dafür, dass Flow- Erleben während des Lernens eine leistungsrelevante Variable des Funktionszustandes beim Lernen ist, die sich in ihrer Beziehungsstruktur erwartungsgemäß in das kognitivmotivationale Prozessmodell einpassen lässt. N2 - According to the cognitive-motivational model of learning, achievement depends on the quality and quantity of learning activities as well as on the functional state during learning. We assumed that the flow-experience is one indicator of the functional state. In a study conducted in foreign language courses we demonstrated that flow-experience predicts achievement, even when controlled for ability. In accordance with the cognitive-motivational model, flow-experience was predicted by the actual motivational state, which was itself dependent on students' motivation at the beginning of the semester. This pattern of relationships was replicated in a second study conducted in a course on elementary statistics for psychology students. The results of both studies indicate that flow-experience is an indicator of the functional state relevant for learning outcome. The general pattern of the results also fits nicely with the proposed relationships of the cognitive-motivational model of learning. KW - Lernmotivation KW - Flow-Erleben KW - Interesse KW - Lernen KW - Leistung KW - Learning motivation KW - Flow-Experience KW - Interest KW - Learning KW - Achievement Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-6324 ER - TY - JOUR A1 - Görn, A. A1 - Vollmeyer, Regina A1 - Rheinberg, Falko T1 - Auswirkungen von Lehr-Erwartungen auf Motivation und Lernen mit Hypermedia Y1 - 2003 ER - TY - JOUR A1 - Görn, A. A1 - Vollmeyer, Regina A1 - Rheinberg, Falko T1 - Effects of motivational orientation and perceived ability on performance Y1 - 2001 ER - TY - JOUR A1 - Kistner, Saskia A1 - Burns, Bruce D. A1 - Vollmeyer, Regina A1 - Kortenkamp, Ulrich T1 - The importance of understanding: Model space moderates goal specificity effects JF - The quarterly journal of experimental psychology N2 - The three-space theory of problem solving predicts that the quality of a learner's model and the goal specificity of a task interact on knowledge acquisition. In Experiment 1 participants used a computer simulation of a lever system to learn about torques. They either had to test hypotheses (nonspecific goal), or to produce given values for variables (specific goal). In the good- but not in the poor-model condition they saw torque depicted as an area. Results revealed the predicted interaction. A nonspecific goal only resulted in better learning when a good model of torques was provided. In Experiment 2 participants learned to manipulate the inputs of a system to control its outputs. A nonspecific goal to explore the system helped performance when compared to a specific goal to reach certain values when participants were given a good model, but not when given a poor model that suggested the wrong hypothesis space. Our findings support the three-space theory. They emphasize the importance of understanding for problem solving and stress the need to study underlying processes. KW - Goal specificity KW - Problem solving KW - Three-space theory KW - Scientific discovery learning Y1 - 2016 U6 - https://doi.org/10.1080/17470218.2015.1076865 SN - 1747-0218 SN - 1747-0226 VL - 69 SP - 1179 EP - 1196 PB - Optical Society of America CY - Abingdon ER - TY - JOUR A1 - Kistner, Saskia A1 - Vollmeyer, Regina A1 - Burns, Bruce D. A1 - Kortenkamp, Ulrich T1 - Model development in scientific discovery learning with a computer-based physics task JF - Computers in human behavior N2 - Based on theories of scientific discovery learning (SDL) and conceptual change, this study explores students' preconceptions in the domain of torques in physics and the development of these conceptions while learning with a computer-based SDL task. As a framework we used a three-space theory of SDL and focused on model space, which is supposed to contain the current conceptualization/model of the learning domain, and on its change through hypothesis testing and experimenting. Three questions were addressed: (1) What are students' preconceptions of torques before learning about this domain? To do this a multiple-choice test for assessing students' models of torques was developed and given to secondary school students (N = 47) who learned about torques using computer simulations. (2) How do students' models of torques develop during SDL? Working with simulations led to replacement of some misconceptions with physically correct conceptions. (3) Are there differential patterns of model development and if so, how do they relate to students’ use of the simulations? By analyzing individual differences in model development, we found that an intensive use of the simulations was associated with the acquisition of correct conceptions. Thus, the three-space theory provided a useful framework for understanding conceptual change in SDL. KW - Scientific discovery learning KW - Multiple problem spaces KW - Computer simulations KW - Physics concepts KW - Misconceptions KW - Conceptual change Y1 - 2016 U6 - https://doi.org/10.1016/j.chb.2016.02.041 SN - 0747-5632 SN - 1873-7692 VL - 59 SP - 446 EP - 455 PB - Elsevier CY - Oxford ER -