TY - JOUR A1 - Adesina, Morenike O. A1 - Block, Inga A1 - Günter, Christina A1 - Unuabonah, Emmanuel Iyayi A1 - Taubert, Andreas T1 - Efficient Removal of Tetracycline and Bisphenol A from Water with a New Hybrid Clay/TiO2 Composite JF - ACS Omega N2 - New TiO2 hybrid composites were prepared fromkaolinclay, predried and carbonized biomass, and titanium tetraisopropoxideand explored for tetracycline (TET) and bisphenol A (BPA) removalfrom water. Overall, the removal rate is 84% for TET and 51% for BPA.The maximum adsorption capacities (q (m))are 30 and 23 mg/g for TET and BPA, respectively. These capacitiesare far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change theadsorption capacity of the adsorbent. pH changes only slightly changeBPA adsorption, while a pH > 7 significantly reduces the adsorptionof TET on the material. The Brouers-Sotolongo fractal modelbest describes the kinetic data for both TET and BPA adsorption, predictingthat the adsorption process occurs via a complex mechanism involvingvarious forces of attraction. Temkin and Freundlich isotherms, whichbest fit the equilibrium adsorption data for TET and BPA, respectively,suggest that adsorption sites are heterogeneous in nature. Overall,the composite materials are much more effective for TET removal fromaqueous solution than for BPA. This phenomenon is assigned to a differencein the TET/adsorbent interactions vs the BPA/adsorbent interactions:the decisive factor appears to be favorable electrostatic interactionsfor TET yielding a more effective TET removal. Y1 - 2023 U6 - https://doi.org/10.1021/acsomega.3c00184 SN - 2470-1343 VL - 8 IS - 24 SP - 21594 EP - 21604 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Babalola, Jonathan Oyebamiji A1 - Omorogie, Martins Osaigbovo A1 - Babarinde, Adesola Abiola A1 - Unuabonah, Emmanuel Iyayi A1 - Oninla, Vincent Olukayode T1 - OPTIMIZATION OF THE BIOSORPTION OF Cr3+, Cd2+ AND Pb2+ USING A NEW BIOWASTE: Zea mays SEED CHAFF JF - Environmental engineering and management journal N2 - This study highlights the potential use of yellow Zea mays seed chaff (YZMSC) biomass as a biosorbent for the removal of Cr3+, Cd2+ and Pb2+ ions from aqueous solutions. Fourier transformed Infrared analysis of the biomass suggests that YZMSC biomass is basically composed of cellulose and methyl cellulose. The biosorption capacities, q(max), of YZMSC biomass for Cr3+, Cd2+ and Pb2+ are 14.68, 121.95 and 384.62 mg/g respectively. Biosorption equilibrium was achieved at 20, 30 and 60 min for Cr3+, Cd2+ and Pb2+ respectively. YZMSC biomass was found to have higher biosorption capacity and overall kinetic rate of uptake for Pb2+ than for Cd2+ and Cr3+. However, Cr3+ had better initial kinetic rate of uptake by the biomass than Pb2+ and Cd2+. The Freundlich equilibrium isotherm model was found to describe equilibrium data better than Langmuir model suggesting that biosorption of these metal ions could be on more than one active site on the surface of YZMSC biomass. Kinetic study predicted the pseudo-second kinetic model as being able to better describe kinetic data obtained than either modified pseudo-first order or Bangham kinetic models. Biosorption of Cr3+, Cd2+ and Pb2+ onto YZMSC biomass was endothermic in nature with large positive entropy values. Biosorption of these metal ions onto YZMSC biomass was observed to be feasible and spontaneous above 283 K. Optimization of biomass weight for the removal of these metal ions suggest that 384 kg, 129 kg and 144 kg of YZMSC biomass is required for the removal of 95% of Cr3+, Cd2+ and Pb2+ metal ions respectively from 100 mg/L of metal ions in 10 tonnes of aqueous solutions. KW - biomass KW - biosorption KW - optimization KW - yellow Zea mays Y1 - 2016 SN - 1582-9596 SN - 1843-3707 VL - 15 SP - 1571 EP - 1580 PB - Gh. Asachi Universitatea Tehnică IaÅŸi CY - Iasi ER - TY - JOUR A1 - Ofomaja, Augustine Enakpodia A1 - Unuabonah, Emmanuel Iyayi T1 - Kinetics and time-dependent Langmuir modeling of 4-nitrophenol adsorption onto Mansonia sawdust JF - Journal of the Taiwan Institute of Chemical Engineers N2 - Often time's adsorption of large molecules onto untreated lignocellulosic materials is viewed as a two stage process and has frequently been characterized only by kinetic models while the rate limiting step of adsorption is determined only at various stages of the adsorption process. In this study the kinetics and the contribution of diffusion processes to 4-nitrophenol adsorption onto untreated sawdust was examined and the overall rate limiting step evaluated. The adsorption profile showed an initial rapid uptake of 4-nitrophenol which decreased and became almost constant after 5 min of contact. Analysis of the adsorption profile with the intraparticle diffusion equation and fractional 4-nitrophenol uptake with time showed that the profile can be divided into three different stages. The rate determining step of 4-nitrophenol adsorption was then evaluated based on the activation energies of each processes along with their activation parameters (Delta G*, Delta H* and Delta S*). The results revealed that external mass transfer was the overall rate limiting step with activation parameters E-a = 21.11, Delta H* = 23.75 and Delta S* = 144.97. Time dependent Langmuir modeling was carried out to optimize process parameters. (c) 2013 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. KW - Untreated agricultural wastes KW - Activation parameters KW - Diffusion processes KW - Double exponential model KW - 4-Nitrophenol KW - Adsorption Y1 - 2013 U6 - https://doi.org/10.1016/j.jtice.2012.12.021 SN - 1876-1070 VL - 44 IS - 4 SP - 566 EP - 576 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Omorogie, Martins O. A1 - Babalola, Jonathan Oyebamiji A1 - Unuabonah, Emmanuel Iyayi A1 - Gong, Jian R. T1 - Clean technology approach for the competitive binding of toxic metal ions onto MnO2 nano-bioextractant JF - Clean technologies and environmental policy N2 - The competitive extraction of Cr(III) onto Nauclea diderrichii seed epicarp doped with MnO2 nanoparticles (MnO2 nano-bioextractant (MNB)) in a single and binary batch system was studied. For validity of experimental data, chi square test, root mean square error, sum of the square errors, hybrid fractional error function, Marquart’s percent standard deviation and standard absolute error were used. Among the kinetic models used, pseudo-second-order and Langmuir equations gave the best fits for the experimental data, with qe (mg g) for the uptake of Cr(III) in single metal system onto MNB, then Cr(III) with Cd(II), Pb(II), Hg(II), KCl and CaCl2 in binary metal systems onto MNB were 2.611, then 1.989, 1.016, 2.208, 1.249 and 1.868 from kinetic standpoint, respectively. The initial sorption rates, h (mg/g/min), and half lives, t1/2 (min), for the uptake of Cr(III) in single metal system onto MNB, then Cr(III) with Cd(II), Pb(II), Hg(II), KCl and CaCl2 in binary metal system onto MNB were 3.497, then 2.311, 2.274, 0.242, 2.956, 45.568 and 0.747, then 5.769, 1.766, 12.144, 1.762, and 2.415, respectively. Physicochemical surface analyses such as pH of point of zero charge, Brunauer–Emmett–Teller single point and multi-point techniques for surface area analyses, scanning electron microscopy and transmission electron microscopy were done on MNB and MnO2 nanoparticles in order to understand their surface microstructures. Desorption study showed that MNB can be recycled and used for future study. Hence, MNB showed good potential to remediate Cr(III) from wastewaters and polluted water. KW - Nauclea diderrichii KW - Nano-bioextractant KW - Doping KW - Kinetics KW - Mass transfer Y1 - 2016 U6 - https://doi.org/10.1007/s10098-015-1004-z SN - 1618-954X SN - 1618-9558 VL - 18 SP - 171 EP - 184 PB - Springer CY - New York ER - TY - JOUR A1 - Omorogie, Martins O. A1 - Babalola, Jonathan Oyebamiji A1 - Unuabonah, Emmanuel Iyayi A1 - Gong, Jian R. T1 - Hybrid materials from agro-waste and nanoparticles: implications on the kinetics of the adsorption of inorganic pollutants JF - Environmental technology N2 - This study is a first-hand report of the immobilization of Nauclea diderrichii seed waste biomass (ND) (an agro-waste) with eco-friendly mesoporous silica (MS) and graphene oxide-MS (GO+MS ) nanoparticles, producing two new hybrid materials namely: MND adsorbent for agro-waste modified with MS and GND adsorbent for agro-waste modified with GO+MS nanoparticles showed improved surface area, pore size and pore volume over those of the agro-waste. The abstractive potential of the new hybrid materials was explored for uptake of Cr(III) and Pb(II) ions. Analysis of experimental data from these new hybrid materials showed increased initial sorption rate of Cr(III) and Pb(II) ions uptake. The amounts of Cr(III) and Pb(II) ions adsorbed by MND and GND adsorbents were greater than those of ND. Modification of N. diderrichii seed waste significantly improved its rate of adsorption and diffusion coefficient for Cr(III) and Pb(II) more than its adsorption capacity. The rate of adsorption of the heavy metal ions was higher with GO+MS nanoparticles than for other adsorbents. Kinetic data were found to fit well the pseudo-second-order and the diffusion-chemisorption kinetic models suggesting that the adsorption of Cr(III) and Pb(II) onto these adsorbents is mainly through chemisorption mechanism. Analysis of kinetic data with the homogeneous particle diffusion kinetic model suggests that particle diffusion (diffusion of ions through the adsorbent) is the rate-limiting step for the adsorption process. KW - adsorption KW - graphene oxide KW - nanoparticles KW - kinetic models KW - hybrid materials Y1 - 2014 U6 - https://doi.org/10.1080/09593330.2013.839747 SN - 0959-3330 SN - 1479-487X VL - 35 IS - 5 SP - 611 EP - 619 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Omorogie, Martins O. A1 - Babalola, Jonathan Oyebamiji A1 - Unuabonah, Emmanuel Iyayi A1 - Gong, Jian Ru T1 - Kinetics and thermodynamics of heavy metal ions sequestration onto novel Nauclea diderrichii seed biomass JF - BIORESOURCE TECHNOLOGY N2 - This study reports the sequestration of Cd(II) and Hg(II) using a new biosorbent. Nauclea diderrichii seed biomass. Experimental data obtained were fitted into kinetic and thermodynamic models. Experimental data fitted best into pseudo-second order kinetic model among others. Results obtained kinetically revealed that the biosorption of Cd(II) and Hg(II) using N. diderrichii seed biosorbent increased with increase in temperature. At the highest temperature, which was 333 K. the highest amount of metal biosorbed, q(e), for Cd(II) and Hg(II) obtained were 6.30 and 6.15 mg/g respectively. The biosorption of Cd(II) was kinetically faster than that of Hg(II), the highest initial biosorption rates for Cd(II) and Hg(II) were 56.19 and 4.39 mg/g min respectively. Thermodynamic parameters obtained by Erying equation from this study revealed that the biosorption process was spontaneous, feasible, endothermic with a decrease in the degree of chaos in the biosorption system. (C) 2012 Elsevier Ltd. All rights reserved. KW - Nauclea diderrichii seed biosorbent KW - Biosorption KW - Kinetics KW - Thermodynamics KW - Film diffusion Y1 - 2012 U6 - https://doi.org/10.1016/j.biortech.2012.04.053 SN - 0960-8524 VL - 118 IS - 8 SP - 576 EP - 579 PB - ELSEVIER SCI LTD CY - OXFORD ER - TY - JOUR A1 - Omorogie, Martins O. A1 - Babalola, Jonathan Oyebamiji A1 - Unuabonah, Emmanuel Iyayi A1 - Song, Weiguo A1 - Gong, Jian Ru T1 - Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: Nauclea diderrichii seed biomass waste JF - Journal of Saudi Chemical Society N2 - Toxic Cr(III) which poses environmental hazard to flora and fauna was efficiently abstracted by low-cost Nauclea diderrichii seed biomass (NDS) with good sequestral capacity for this metal was investigated in this study. The NDS surface analyses showed that it has a specific surface area of 5.36 m(2)/g and pHpzc of 4.90. Thermogravimetric analysis of NDS showed three consecutive weight losses from 50-200 degrees C (ca. 5%), 200-400 C (ca. 35%), >400 degrees C (ca. 10%), corresponding to external water molecules, structural water molecules and heat induced condensation reactions respectively. Differential thermogram of NDS presented a large endothermic peak between 20-510 degrees C suggesting bond breakage and dissociation with the ultimate release of small molecules. The experimental data showed kinetically fast biosorption with increased initial Cr(III) concentrations, indicating the role of external mass transfer mechanism as the rate controlling mechanism in this adsorption process. The Langmuir biosorption capacity of NDS was 483.81 mg/g. The use of the corrected Akaike Information Criterion tool for ranking equilibrium models suggested that the Freundlich model best described the experimental data, which is an indication of the heterogeneous nature of the active sites on the surface of NDS. N. diderrichii seed biomass is an easily sourced, cheap and environmental friendly biosorbent which will serve as a good and cost effective alternative to activated carbon for the treatment of polluted water and industrial effluents. (C) 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved. KW - Biomass KW - Equilibrium KW - External mass transfer KW - Kinetics KW - Adsorption KW - Water Y1 - 2016 U6 - https://doi.org/10.1016/j.jscs.2012.09.017 SN - 1319-6103 SN - 2212-4640 VL - 20 SP - 49 EP - 57 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ugwuja, Chidinma G. A1 - Adelowo, Olawale O. A1 - Ogunlaja, Aemere A1 - Omorogie, Martins O. A1 - Olukanni, Olumide D. A1 - Ikhimiukor, Odion O. A1 - Iermak, Ievgeniia A1 - Kolawole, Gabriel A. A1 - Günter, Christina A1 - Taubert, Andreas A1 - Bodede, Olusola A1 - Moodley, Roshila A1 - Inada, Natalia M. A1 - Camargo, Andrea S.S. de A1 - Unuabonah, Emmanuel Iyayi T1 - Visible-Light-Mediated Photodynamic Water Disinfection @ Bimetallic-Doped Hybrid Clay Nanocomposites JF - ACS applied materials & interfaces N2 - This study reports a new class of photocatalytic hybrid clay nanocomposites prepared from low-cost sources (kaolinite clay and Carica papaya seeds) doped with Zn and Cu salts via a solvothermal process. X-ray diffraction analysis suggests that Cu-doping and Cu/Zn-doping introduce new phases into the crystalline structure of Kaolinite clay, which is linked to the reduced band gap of kaolinite from typically between 4.9 and 8.2 eV to 2.69 eV for Cu-doped and 1.5 eV for Cu/Zn hybrid clay nanocomposites (Nisar, J.; Arhammar, C.; Jamstorp, E.; Ahuja, R. Phys. Rev. B 2011, 84, 075120). In the presence of solar light irradiation, Cu- and Cu/Zn-doped nanocomposites facilitate the electron hole pair separation. This promotes the generation of singlet oxygen which in turn improves the water disinfection efficiencies of these novel nanocomposite materials. The nanocomposite materials were further characterized using high-resolution scanning electron microscopy, fluorimetry, therrnogravimetric analysis, and Raman spectroscopy. The breakthrough times of the nanocomposites for a fixed bed mode of disinfection of water contaminated with 2.32 x 10(7) cfu/mL E. coli ATCC 25922 under solar light irradiation are 25 h for Zn-doped, 30 h for Cu-doped, and 35 h for Cu/Zn-doped nanocomposites. In the presence of multidrug and multimetal resistant strains of E. coli, the breakthrough time decreases significantly. Zn-only doped nanocomposites are not photocatalytically active. In the absence of light, the nanocomposites are still effective in decontaminating water, although less efficient than under solar light irradiation. Electrostatic interaction, metal toxicity, and release of singlet oxygen (only in the Cu-doped and Cu/Zn-doped nanocomposites) are the three disinfection mechanisms by which these nanocomposites disinfect water. A regrowth study indicates the absence of any living E. coli cells in treated water even after 4 days. These data and the long hydraulic times (under gravity) exhibited by these nanocomposites during photodisinfection of water indicate an unusually high potential of these nanocomposites as efficient, affordable, and sustainable point-of-use systems for the disinfection of water in developing countries. KW - disinfection KW - nanocomposite material KW - multidrug-resistant Escherichia coli KW - water KW - reactive oxygen species Y1 - 2019 U6 - https://doi.org/10.1021/acsami.9b01212 SN - 1944-8244 SN - 1944-8252 VL - 11 IS - 28 SP - 25483 EP - 25494 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Unuabonah, Emmanuel Iyayi A1 - Agunbiade, Foluso O. A1 - Alfred, Moses O. A1 - Adewumi, Thompson A. A1 - Okoli, Chukwunonso P. A1 - Omorogie, Martins O. A1 - Akanbi, Moses O. A1 - Ofomaja, Augustine E. A1 - Taubert, Andreas T1 - Facile synthesis of new amino-functionalized agrogenic hybrid composite clay adsorbents for phosphate capture and recovery from water JF - Journal of Cleaner Production N2 - New hybrid clay materials with good affinity for phosphate ions were developed from a combination of biomass-Carica papaya seeds (PS) and Musa paradisiaca (Plantain peels-PP), ZnCl2 and Kaolinite clay to produce iPS-HYCA and iPP-HYCA composite adsorbents respectively. Functionalization of these adsorbents with an organosilane produced NPS-HYCA and NPP-HYCA composite adsorbents. The pH(pzc) for the adsorbents were 7.83, 6.91, 7.66 and 6.55 for iPS-HYCA, NPS-HYCA, iPP-HYCA and NPP-HYCA respectively. Using the Brouer-Sotolongo isotherm model which best predict the adsorption capacity of composites for phosphate, iPP-HYCA, iPS-HYCA, NPP-HYCA, and NPS-HYCA composite adsorbents respectively. When compared with some commercial resins, the amino-functionalized adsorbents had better adsorption capacities. Furthermore, amino-functionalized adsorbents showed improved adsorption capacity and rate of phosphate uptake (as much as 40-fold), as well as retain 94% (for NPS-HYCA) and 84.1% (for NPP-HYCA) efficiency for phosphate adsorption after 5 adsorption-desorption cycles (96 h of adsorption time with 100 mg/L of phosphate ions) as against 37.5% (for iPS-HYCA) and 35% (for iPP-HYCA) under similar conditions. In 25 min desorption of phosphate ion attained equilibrium. These new amino-functionalized hybrid clay composite adsorbents, which were prepared by a simple means that is sustainable, have potentials for the efficient capture of phosphate ions from aqueous solution. They are quickly recovered from aqueous solution, non-biodegradable (unlike many biosorbent) with potentials to replace expensive adsorbents in the future. They have the further advantage of being useful in the recovery of phosphate for use in agriculture which could positively impact the global food security programme. (C) 2017 Elsevier Ltd. All rights reserved. KW - Composite adsorbents KW - Sustainable KW - Phosphate recovery KW - Water KW - Desorption kinetics Y1 - 2017 U6 - https://doi.org/10.1016/j.jclepro.2017.06.160 SN - 0959-6526 SN - 1879-1786 VL - 164 SP - 652 EP - 663 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Unuabonah, Emmanuel Iyayi A1 - El-Khaiary, Mohammad I. A1 - Olu-Owolabi, Bamidele I. A1 - Adebowale, Kayode O. T1 - Predicting the dynamics and performance of a polymer-clay based composite in a fixed bed system for the removal of lead (II) ion JF - Chemical engineering research and design N2 - A polymer-clay based composite adsorbent was prepared from locally obtained kaolinite clay and polyvinyl alcohol. The composite adsorbent was used to remove lead (II) ions from aqueous solution in a fixed bed mode. The increase in bed height and initial metal ion concentration increased the adsorption capacity of lead (II) and the volume of aqueous solution treated at 50% breakthrough. However, the adsorption capacity was reduced by almost 16.5% with the simultaneous presence of Ca2+/Pb2+ and Na+/Pb2+ in the aqueous solution. Regeneration of the adsorbent with 0.1 M of HCl also reduced its adsorption capacity to 75.1%. Adsorption of lead (II) ions onto the polymer-clay composite adsorbent in the presence of Na+ and Ca2+ electrolyte increased the rate of mass transfer, probably due to competition between cationic species in solution for adsorption sites. Regeneration further increased the rate of mass transfer as a result of reduced adsorption sites after the regeneration process. The length of the mass transfer zone was found to increase with increasing bed height but did not change with increasing the initial metal ion concentration. The models of Yoon-Nelson, Thomas, and Clark were found to give good fit to adsorption data. On the other hand, Bohart-Adams model was found to be a poor predictor for the column operation. The polymer-clay composite adsorbent has a good potential for the removal of lead (II) ions from highly polluted aqueous solutions. KW - Fixed bed KW - Adsorption models KW - Polymer-clay composite KW - Regeneration KW - Breakthrough KW - Mass transfer zone Y1 - 2012 U6 - https://doi.org/10.1016/j.cherd.2011.11.009 SN - 0263-8762 VL - 90 IS - 8 SP - 1105 EP - 1115 PB - Inst. of Electr. and Electronics Engineers CY - Rugby ER -