TY - JOUR A1 - Balagansky, V. V. A1 - Timmerman, Martin Jan A1 - Kozlova, N. Ye. A1 - Kisilitsyn, R. V. T1 - A 2.44 Ga old mafic dyke swarm in the Kolvitsa Belt, Kola Peninsula, Russia: implications for the early Palaeoproterozoic tectonics in the north-eastern Fennoscandian Shield Y1 - 2001 ER - TY - JOUR A1 - Bridgwater, D. A1 - Scott, D. J. A1 - Balagansky, V. V. A1 - Timmerman, Martin Jan A1 - Marker, Michael A1 - Bushmin, S. S. A1 - Alexeyev, N. L. A1 - Daly, J. S. T1 - Age and provenance of early Precambrian metasedimentary rocks in the Lapland-Kola Belt, Russia : evidence from Pb and Nd isotopic data Y1 - 2001 ER - TY - JOUR A1 - Daly, J. S. A1 - Balagansky, V. V. A1 - Timmerman, Martin Jan A1 - Whitehouse, M. J. A1 - de Jong, K. A1 - Guise, P. A1 - Bogdanova, S. A1 - Gorbatschev, R. A1 - Bridgwater, D. T1 - Ion microprobe U-Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola Orogen, northern Fennoscandian Shield Y1 - 2001 ER - TY - JOUR A1 - Ennis, Meg A1 - Meere, Patrick A. A1 - Timmerman, Martin Jan A1 - Sudo, Masafumi T1 - Post-Acadian sediment recycling in the Devonian Old Red Sandstone of Southern Ireland JF - Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research N2 - The Upper Devonian Munster Basin of southern Ireland has traditionally been viewed as a post-orogenic molasse deposit that was sourced from the Caledonides of central Ireland and subsequently deformed by the end Carboniferous Variscan orogenic event. The basin fill is composed of super-mature quartz arenite sandstone that clearly represents a second cycle of deposition. The source of this detritus is now recognized as Lower Devonian Dingle Basin red bed sequences to the north. This genetic link is based on the degree of similarity in the detrital mica chemistry in both of these units; micas plot in identical fields and define the same trends. In addition, the two sequences show increased textural and chemical maturity up-sequence and define indistinguishable Ar-40/Ar-39 age ranges for the detrital mica grains. Partial resetting of the Ar ages can be attributed to elevated heat flow in the region caused by Munster Basin extension and subsequent Variscan deformation. The combined evidence from southwest Ireland therefore points to a Caledonian or possibly Taconian primary source area that initially shed detritus into the Lower Devonian Dingle Basin which was subsequently recycled into the Upper Devonian Munster Basin following mid-Devonian Acadian basin inversion. (C) 2014 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved. KW - Caledonian KW - Acadian KW - Variscan KW - Old Red Sandstone KW - Sediment recycling Y1 - 2015 U6 - https://doi.org/10.1016/j.gr.2014.10.007 SN - 1342-937X SN - 1878-0571 VL - 28 IS - 4 SP - 1415 EP - 1433 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Fairey, Brenton J. A1 - Timmerman, Martin Jan A1 - Sudo, Masafumi A1 - Tsikos, Harilaos T1 - The role of hydrothermal activity in the formation of Karst-hosted manganese deposits of the Postmasburg Mn Field, Northern Cape Province, South Africa T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Postmasburg Manganese Field (PMF), Northern Cape Province, South Africa, once represented one of the largest sources of manganese ore worldwide. Two belts of manganese ore deposits have been distinguished in the PMF, namely the Western Belt of ferruginous manganese ores and the Eastern Belt of siliceous manganese ores. Prevailing models of ore formation in these two belts invoke karstification of manganese-rich dolomites and residual accumulation of manganese wad which later underwent diagenetic and low-grade metamorphic processes. For the most part, the role of hydrothermal processes and metasomatic alteration towards ore formation has not been adequately discussed. Here we report an abundance of common and some rare Al-, Na-, K- and Ba-bearing minerals, particularly aegirine, albite, microcline, banalsite, sérandite-pectolite, paragonite and natrolite in Mn ores of the PMF, indicative of hydrothermal influence. Enrichments in Na, K and/or Ba in the ores are generally on a percentage level for most samples analysed through bulk-rock techniques. The presence of As-rich tokyoite also suggests the presence of As and V in the hydrothermal fluid. The fluid was likely oxidized and alkaline in nature, akin to a mature basinal brine. Various replacement textures, particularly of Na- and K- rich minerals by Ba-bearing phases, suggest sequential deposition of gangue as well as ore-minerals from the hydrothermal fluid, with Ba phases being deposited at a later stage. The stratigraphic variability of the studied ores and their deviation from the strict classification of ferruginous and siliceous ores in the literature, suggests that a re-evaluation of genetic models is warranted. New Ar-Ar ages for K-feldspars suggest a late Neoproterozoic timing for hydrothermal activity. This corroborates previous geochronological evidence for regional hydrothermal activity that affected Mn ores at the PMF but also, possibly, the high-grade Mn ores of the Kalahari Manganese Field to the north. A revised, all-encompassing model for the development of the manganese deposits of the PMF is then proposed, whereby the source of metals is attributed to underlying carbonate rocks beyond the Reivilo Formation of the Campbellrand Subgroup. The main process by which metals are primarily accumulated is attributed to karstification of the dolomitic substrate. The overlying Asbestos Hills Subgroup banded iron formation (BIF) is suggested as a potential source of alkali metals, which also provides a mechanism for leaching of these BIFs to form high-grade residual iron ore deposits. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 966 KW - manganese ore KW - Postmasburg manganese field KW - hydrothermal KW - karst KW - South Africa Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473304 SN - 1866-8372 IS - 966 ER - TY - JOUR A1 - Fairey, Brenton J. A1 - Timmerman, Martin Jan A1 - Sudo, Masafumi A1 - Tsikos, Harilaos T1 - The role of hydrothermal activity in the formation of Karst-hosted manganese deposits of the Postmasburg Mn Field, Northern Cape Province, South Africa JF - Minerals N2 - The Postmasburg Manganese Field (PMF), Northern Cape Province, South Africa, once represented one of the largest sources of manganese ore worldwide. Two belts of manganese ore deposits have been distinguished in the PMF, namely the Western Belt of ferruginous manganese ores and the Eastern Belt of siliceous manganese ores. Prevailing models of ore formation in these two belts invoke karstification of manganese-rich dolomites and residual accumulation of manganese wad which later underwent diagenetic and low-grade metamorphic processes. For the most part, the role of hydrothermal processes and metasomatic alteration towards ore formation has not been adequately discussed. Here we report an abundance of common and some rare Al-, Na-, K- and Ba-bearing minerals, particularly aegirine, albite, microcline, banalsite, serandite-pectolite, paragonite and natrolite in Mn ores of the PMF, indicative of hydrothermal influence. Enrichments in Na, K and/or Ba in the ores are generally on a percentage level for most samples analysed through bulk-rock techniques. The presence of As-rich tokyoite also suggests the presence of As and V in the hydrothermal fluid. The fluid was likely oxidized and alkaline in nature, akin to a mature basinal brine. Various replacement textures, particularly of Na- and K- rich minerals by Ba-bearing phases, suggest sequential deposition of gangue as well as ore-minerals from the hydrothermal fluid, with Ba phases being deposited at a later stage. The stratigraphic variability of the studied ores and their deviation from the strict classification of ferruginous and siliceous ores in the literature, suggests that a re-evaluation of genetic models is warranted. New Ar-Ar ages for K-feldspars suggest a late Neoproterozoic timing for hydrothermal activity. This corroborates previous geochronological evidence for regional hydrothermal activity that affected Mn ores at the PMF but also, possibly, the high-grade Mn ores of the Kalahari Manganese Field to the north. A revised, all-encompassing model for the development of the manganese deposits of the PMF is then proposed, whereby the source of metals is attributed to underlying carbonate rocks beyond the Reivilo Formation of the Campbellrand Subgroup. The main process by which metals are primarily accumulated is attributed to karstification of the dolomitic substrate. The overlying Asbestos Hills Subgroup banded iron formation (BIF) is suggested as a potential source of alkali metals, which also provides a mechanism for leaching of these BIFs to form high-grade residual iron ore deposits. KW - manganese ore KW - Postmasburg manganese field KW - hydrothermal KW - karst KW - South Africa Y1 - 2019 U6 - https://doi.org/10.3390/min9070408 SN - 2075-163X VL - 9 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Faithfull, J. W. A1 - Timmerman, Martin Jan A1 - Upton, B. G. J. A1 - Rumsey, M. S. T1 - Mid-Eocene renewal of magmatism in NW Scotland the Loch Roag Dyke, outer hebrides JF - Journal of the Geological Society N2 - Amonchquite dyke, in the vicinity of Loch Roag, Lewis, Outer Hebrides has an unusually enriched chemistry, and contains a unique assemblage of megacrysts and xenoliths from the lithosphere of the Hebridean craton. A Ar-40/Ar-39 plateau age of 45.2 +/- 0.2 Ma (2 sigma) of a phlogopite megacryst from the dyke overlaps an earlier reported K-Ar age, and confirms that the British Palaeogene Igneous Province extended into the Eocene. Similar late low-volume melts were erupted in the Eocene and Oligocene in West and East Greenland, suggesting that such late-stage magmatic rejuvenescence is a widespread feature across the North Atlantic Igneous Province. Y1 - 2012 U6 - https://doi.org/10.1144/0016-76492011-117 SN - 0016-7649 VL - 169 IS - 2 SP - 115 EP - 118 PB - Geological Soc. Publ. House CY - Bath ER - TY - JOUR A1 - Heeremans, Michel A1 - Timmerman, Martin Jan A1 - Kirstein, Linda A. A1 - Faleide, J. I. T1 - The late carboniferous : early permian evolution of the central North Sea Y1 - 2004 ER - TY - JOUR A1 - Henk, A. A1 - Timmerman, Martin Jan T1 - Permian basins Y1 - 2005 ER - TY - JOUR A1 - Krmíček, Lukáš A1 - Timmerman, Martin Jan A1 - Ziemann, Martin Andreas A1 - Sudo, Masafumi A1 - Ulrych, Jaromir T1 - 40Ar/39Ar step-heating dating of phlogopite and kaersutite megacrysts from the Železná hůrka (Eisenbühl) Pleistocene scoria cone, Czech Republic JF - Geologica Carpathica N2 - (40)A/Ar-39 step-heating of mica and amphibole megacrysts from hauyne-bearing olivine melilitite scoria/tephra from the Zelezna hurka yielded a 435 +/- 108 ka isotope correlation age for phlogopite and a more imprecise 1.55 Ma total gas age of the kaersutite megacryst. The amphibole megacrysts may constitute the first, and the younger phlogopite megacrysts the later phase of mafic, hydrous melilitic magma crystallization. It cannot be ruled out that the amphibole megacrysts are petrogenetically unrelated to tephra and phlogopite megacrysts and were derived from mantle xenoliths or disaggregated older, deep crustal pegmatites. This is in line both with the rarity of amphibole at Zelezna hurka and with the observed signs of magmatic resorption at the edges of amphibole crystals. KW - Bohemian Massif KW - Zelezna hurka KW - Eisenbuhl KW - argon dating KW - mica KW - amphibole KW - melilitite Y1 - 2020 U6 - https://doi.org/10.31577/GeolCarp.71.4.6 SN - 1335-0552 SN - 1336-8052 VL - 71 IS - 4 SP - 382 EP - 387 PB - Veda CY - Bratislava ER -