TY - JOUR A1 - Egli, Lukas A1 - Weise, Hanna A1 - Radchuk, Viktoriia A1 - Seppelt, Ralf A1 - Grimm, Volker T1 - Exploring resilience with agent-based models: State of the art, knowledge gaps and recommendations for coping with multidimensionality JF - Ecological complexity N2 - Anthropogenic pressures increasingly alter natural systems. Therefore, understanding the resilience of agent-based complex systems such as ecosystems, i.e. their ability to absorb these pressures and sustain their functioning and services, is a major challenge. However, the mechanisms underlying resilience are still poorly understood. A main reason for this is the multidimensionality of both resilience, embracing the three fundamental stability properties recovery, resistance and persistence, and of the specific situations for which stability properties can be assessed. Agent-based models (ABM) complement empirical research which is, for logistic reasons, limited in coping with these multiple dimensions. Besides their ability to integrate multidimensionality through extensive manipulation in a fully controlled system, ABMs can capture the emergence of system resilience from individual interactions and feedbacks across different levels of organization. To assess the extent to which this potential of ABMs has already been exploited, we reviewed the state of the art in exploring resilience and its multidimensionality in ecological and socio-ecological systems with ABMs. We found that the potential of ABMs is not utilized in most models, as they typically focus on a single dimension of resilience by using variability as a proxy for persistence, and are limited to one reference state, disturbance type and scale. Moreover, only few studies explicitly test the ability of different mechanisms to support resilience. To overcome these limitations, we recommend to simultaneously assess multiple stability properties for different situations and under consideration of the mechanisms that are hypothesised to render a system resilient. This will help us to better exploit the potential of ABMs to understand and quantify resilience mechanisms, and hence support solving real-world problems related to the resilience of agent-based complex systems. KW - Agent-based models KW - Model development KW - Multidimensionality KW - Review KW - Social-ecological systems KW - Stability properties Y1 - 2019 U6 - https://doi.org/10.1016/j.ecocom.2018.06.008 SN - 1476-945X SN - 1476-9840 VL - 40 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Grimm, Volker A1 - Augusiak, Jacqueline A1 - Focks, Andreas A1 - Frank, Beatrice M. A1 - Gabsi, Faten A1 - Johnston, Alice S. A. A1 - Liu, Chun A1 - Martin, Benjamin T. A1 - Meli, Mattia A1 - Radchuk, Viktoriia A1 - Thorbek, Pernille A1 - Railsback, Steven Floyd T1 - Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - The potential of ecological models for supporting environmental decision making is increasingly acknowledged. However, it often remains unclear whether a model is realistic and reliable enough. Good practice for developing and testing ecological models has not yet been established. Therefore, TRACE, a general framework for documenting a model's rationale, design, and testing was recently suggested. Originally TRACE was aimed at documenting good modelling practice. However, the word 'documentation' does not convey TRACE's urgency. Therefore, we re-define TRACE as a tool for planning, performing, and documenting good modelling practice. TRACE documents should provide convincing evidence that a model was thoughtfully designed, correctly implemented, thoroughly tested, well understood, and appropriately used for its intended purpose. TRACE documents link the science underlying a model to its application, thereby also linking modellers and model users, for example stakeholders, decision makers, and developers of policies. We report on first experiences in producing TRACE documents. We found that the original idea underlying TRACE was valid, but to make its use more coherent and efficient, an update of its structure and more specific guidance for its use are needed. The updated TRACE format follows the recently developed framework of model 'evaludation': the entire process of establishing model quality and credibility throughout all stages of model development, analysis, and application. TRACE thus becomes a tool for planning, documenting, and assessing model evaludation, which includes understanding the rationale behind a model and its envisaged use. We introduce the new structure and revised terminology of TRACE and provide examples. (C) 2014 Elsevier B.V. All rights reserved. KW - Standardization KW - Good modelling practice KW - Risk assessment KW - Decision support Y1 - 2014 U6 - https://doi.org/10.1016/j.ecolmodel.2014.01.018 SN - 0304-3800 SN - 1872-7026 VL - 280 SP - 129 EP - 139 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Horn, Juliane A1 - Becher, Matthias A. A1 - Johst, Karin A1 - Kennedy, Peter J. A1 - Osborne, Juliet L. A1 - Radchuk, Viktoriia A1 - Grimm, Volker T1 - Honey bee colony performance affected by crop diversity and farmland structure BT - a modeling framework T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Forage availability has been suggested as one driver of the observed decline in honey bees. However, little is known about the effects of its spatiotemporal variation on colony success. We present a modeling framework for assessing honey bee colony viability in cropping systems. Based on two real farmland structures, we developed a landscape generator to design cropping systems varying in crop species identity, diversity, and relative abundance. The landscape scenarios generated were evaluated using the existing honey bee colony model BEEHAVE, which links foraging to in-hive dynamics. We thereby explored how different cropping systems determine spatiotemporal forage availability and, in turn, honey bee colony viability (e.g., time to extinction, TTE) and resilience (indicated by, e.g., brood mortality). To assess overall colony viability, we developed metrics,P(H)andP(P,)which quantified how much nectar and pollen provided by a cropping system per year was converted into a colony's adult worker population. Both crop species identity and diversity determined the temporal continuity in nectar and pollen supply and thus colony viability. Overall farmland structure and relative crop abundance were less important, but details mattered. For monocultures and for four-crop species systems composed of cereals, oilseed rape, maize, and sunflower,P(H)andP(P)were below the viability threshold. Such cropping systems showed frequent, badly timed, and prolonged forage gaps leading to detrimental cascading effects on life stages and in-hive work force, which critically reduced colony resilience. Four-crop systems composed of rye-grass-dandelion pasture, trefoil-grass pasture, sunflower, and phacelia ensured continuous nectar and pollen supply resulting in TTE > 5 yr, andP(H)(269.5 kg) andP(P)(108 kg) being above viability thresholds for 5 yr. Overall, trefoil-grass pasture, oilseed rape, buckwheat, and phacelia improved the temporal continuity in forage supply and colony's viability. Our results are hypothetical as they are obtained from simplified landscape settings, but they nevertheless match empirical observations, in particular the viability threshold. Our framework can be used to assess the effects of cropping systems on honey bee viability and to develop land-use strategies that help maintain pollination services by avoiding prolonged and badly timed forage gaps. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1351 KW - apis mellifera KW - BEEHAVE KW - colony viability KW - crop diversity KW - cropping system KW - decline KW - forage availability KW - forage gaps KW - honey bees KW - landscape generator KW - modeling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-556943 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Horn, Juliane A1 - Becher, Matthias A. A1 - Johst, Karin A1 - Kennedy, Peter J. A1 - Osborne, Juliet L. A1 - Radchuk, Viktoriia A1 - Grimm, Volker T1 - Honey bee colony performance affected by crop diversity and farmland structure BT - a modeling framework JF - Ecological applications N2 - Forage availability has been suggested as one driver of the observed decline in honey bees. However, little is known about the effects of its spatiotemporal variation on colony success. We present a modeling framework for assessing honey bee colony viability in cropping systems. Based on two real farmland structures, we developed a landscape generator to design cropping systems varying in crop species identity, diversity, and relative abundance. The landscape scenarios generated were evaluated using the existing honey bee colony model BEEHAVE, which links foraging to in-hive dynamics. We thereby explored how different cropping systems determine spatiotemporal forage availability and, in turn, honey bee colony viability (e.g., time to extinction, TTE) and resilience (indicated by, e.g., brood mortality). To assess overall colony viability, we developed metrics,P(H)andP(P,)which quantified how much nectar and pollen provided by a cropping system per year was converted into a colony's adult worker population. Both crop species identity and diversity determined the temporal continuity in nectar and pollen supply and thus colony viability. Overall farmland structure and relative crop abundance were less important, but details mattered. For monocultures and for four-crop species systems composed of cereals, oilseed rape, maize, and sunflower,P(H)andP(P)were below the viability threshold. Such cropping systems showed frequent, badly timed, and prolonged forage gaps leading to detrimental cascading effects on life stages and in-hive work force, which critically reduced colony resilience. Four-crop systems composed of rye-grass-dandelion pasture, trefoil-grass pasture, sunflower, and phacelia ensured continuous nectar and pollen supply resulting in TTE > 5 yr, andP(H)(269.5 kg) andP(P)(108 kg) being above viability thresholds for 5 yr. Overall, trefoil-grass pasture, oilseed rape, buckwheat, and phacelia improved the temporal continuity in forage supply and colony's viability. Our results are hypothetical as they are obtained from simplified landscape settings, but they nevertheless match empirical observations, in particular the viability threshold. Our framework can be used to assess the effects of cropping systems on honey bee viability and to develop land-use strategies that help maintain pollination services by avoiding prolonged and badly timed forage gaps. KW - apis mellifera KW - BEEHAVE KW - colony viability KW - crop diversity KW - cropping system KW - decline KW - forage availability KW - forage gaps KW - honey bees KW - landscape generator KW - modeling Y1 - 2020 U6 - https://doi.org/10.1002/eap.2216 SN - 1939-5582 SN - 1051-0761 VL - 31 IS - 1 SP - 1 EP - 22 PB - Wiley Periodicals LLC CY - Washington DC ER - TY - JOUR A1 - Kürschner, Tobias A1 - Scherer, Cédric A1 - Radchuk, Viktoriia A1 - Blaum, Niels A1 - Kramer-Schadt, Stephanie T1 - Movement can mediate temporal mismatches between resource availability and biological events in host-pathogen interactions JF - Ecology and evolution N2 - Global change is shifting the timing of biological events, leading to temporal mismatches between biological events and resource availability. These temporal mismatches can threaten species' populations. Importantly, temporal mismatches not only exert strong pressures on the population dynamics of the focal species, but can also lead to substantial changes in pairwise species interactions such as host-pathogen systems. We adapted an established individual-based model of host-pathogen dynamics. The model describes a viral agent in a social host, while accounting for the host's explicit movement decisions. We aimed to investigate how temporal mismatches between seasonal resource availability and host life-history events affect host-pathogen coexistence, that is, disease persistence. Seasonal resource fluctuations only increased coexistence probability when in synchrony with the hosts' biological events. However, a temporal mismatch reduced host-pathogen coexistence, but only marginally. In tandem with an increasing temporal mismatch, our model showed a shift in the spatial distribution of infected hosts. It shifted from an even distribution under synchronous conditions toward the formation of disease hotspots, when host life history and resource availability mismatched completely. The spatial restriction of infected hosts to small hotspots in the landscape initially suggested a lower coexistence probability due to the critical loss of susceptible host individuals within those hotspots. However, the surrounding landscape facilitated demographic rescue through habitat-dependent movement. Our work demonstrates that the negative effects of temporal mismatches between host resource availability and host life history on host-pathogen coexistence can be reduced through the formation of temporary disease hotspots and host movement decisions, with implications for disease management under disturbances and global change. KW - classical swine fever KW - dynamic landscapes KW - global change KW - host– pathogen dynamics KW - individual‐ based model KW - movement ecology Y1 - 2021 U6 - https://doi.org/10.1002/ece3.7478 SN - 2045-7758 VL - 11 IS - 10 SP - 5728 EP - 5741 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Patel, Riddhi P. A1 - Förster, Daniel W. A1 - Kitchener, Andrew C. A1 - Rayan, Mark D. A1 - Mohamed, Shariff W. A1 - Werner, Laura A1 - Lenz, Dorina A1 - Pfestorf, Hans A1 - Kramer-Schadt, Stephanie A1 - Radchuk, Viktoriia A1 - Fickel, Jörns A1 - Wilting, Andreas T1 - Two species of Southeast Asian cats in the genus Catopuma with diverging histories: an island endemic forest specialist and a widespread habitat generalist JF - Royal Society Open Science N2 - Background. The bay cat Catopuma badia is endemic to Borneo, whereas its sister species the Asian golden cat Catopuma temminckii is distributed from the Himalayas and southern China through Indochina, Peninsular Malaysia and Sumatra. Based onmorphological data, up to five subspecies of the Asian golden cat have been recognized, but a taxonomic assessment, including molecular data and morphological characters, is still lacking. Results. We combined molecular data (whole mitochondrial genomes), morphological data (pelage) and species distribution projections (up to the Late Pleistocene) to infer how environmental changes may have influenced the distribution of these sister species over the past 120 000 years. The molecular analysis was based on sequenced mitogenomes of 3 bay cats and 40 Asian golden cats derived mainly from archival samples. Our molecular data suggested a time of split between the two species approximately 3.16 Ma and revealed very low nucleotide diversity within the Asian golden cat population, which supports recent expansion of the population. Discussion. The low nucleotide diversity suggested a population bottleneck in the Asian golden cat, possibly caused by the eruption of the Toba volcano in Northern Sumatra (approx. 74 kya), followed by a continuous population expansion in the Late Pleistocene/Early Holocene. Species distribution projections, the reconstruction of the demographic history, a genetic isolation-by-distance pattern and a gradual variation of pelage pattern support the hypothesis of a post-Toba population expansion of the Asian golden cat from south China/Indochina to PeninsularMalaysia and Sumatra. Our findings reject the current classification of five subspecies for the Asian golden cat, but instead support either a monotypic species or one comprising two subspecies: (i) the Sunda golden cat, distributed south of the Isthmus of Kra: C. t. temminckii and (ii) Indochinese, Indian, Himalayan and Chinese golden cats, occurring north of the Isthmus: C. t. moormensis. KW - Felidae KW - Southeast Asia KW - last glacial maximum KW - Toba volcanic eruption KW - hybrid capture KW - next generation sequencing Y1 - 2016 U6 - https://doi.org/10.1098/rsos.160350 SN - 2054-5703 VL - 3 SP - 741 EP - 752 PB - Royal Society CY - London ER - TY - JOUR A1 - Radchuk, Viktoriia A1 - De Laender, Frederik A1 - Cabral, Juliano Sarmento A1 - Boulangeat, Isabelle A1 - Crawford, Michael Scott A1 - Bohn, Friedrich A1 - De Raedt, Jonathan A1 - Scherer, Cedric A1 - Svenning, Jens-Christian A1 - Thonicke, Kirsten A1 - Schurr, Frank M. A1 - Grimm, Volker A1 - Kramer-Schadt, Stephanie T1 - The dimensionality of stability depends on disturbance type JF - Ecology letters N2 - Ecosystems respond in various ways to disturbances. Quantifying ecological stability therefore requires inspecting multiple stability properties, such as resistance, recovery, persistence and invariability. Correlations among these properties can reduce the dimensionality of stability, simplifying the study of environmental effects on ecosystems. A key question is how the kind of disturbance affects these correlations. We here investigated the effect of three disturbance types (random, species-specific, local) applied at four intensity levels, on the dimensionality of stability at the population and community level. We used previously parameterized models that represent five natural communities, varying in species richness and the number of trophic levels. We found that disturbance type but not intensity affected the dimensionality of stability and only at the population level. The dimensionality of stability also varied greatly among species and communities. Therefore, studying stability cannot be simplified to using a single metric and multi-dimensional assessments are still to be recommended. KW - Community model KW - disturbance intensity KW - disturbance type KW - extinction KW - individual-based model KW - invariability KW - persistence KW - recovery KW - resistance Y1 - 2019 U6 - https://doi.org/10.1111/ele.13226 SN - 1461-023X SN - 1461-0248 VL - 22 IS - 4 SP - 674 EP - 684 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Radchuk, Viktoriia A1 - Johst, Karin A1 - Groeneveld, Jürgen A1 - Turlure, Camille A1 - Grimm, Volker A1 - Schtickzelle, Nicolas T1 - Appropriate resolution in time and model structure for population viability analysis: Insights from a butterfly metapopulation JF - : an international journal N2 - The importance of a careful choice of the appropriate scale for studying ecological phenomena has been stressed repeatedly. However, issues of spatial scale in metapopulation dynamics received much more attention compared to temporal scale. Moreover, multiple calls were made to carefully choose the appropriate model structure for Population Viability Analysis (PVA). We assessed the effect of using coarser resolution in time and model structure on population dynamics. For this purpose, we compared outcomes of two PVA models differing in their time step: daily individual-based model (dIBM) and yearly stage-based model (ySBM), loaded with empirical data on a well-known metapopulation of the butterfly Boloria eunomia. Both models included the same environmental drivers of population dynamics that were previously identified as being the most important for this species. Under temperature change scenarios, both models yielded the same qualitative scenario ranking, but they quite substantially differed quantitatively with dIBM being more pessimistic in absolute viability measures. We showed that these differences stemmed from inter-individual heterogeneity in dIBM allowing for phenological shifts of individual appearance. We conclude that a finer temporal resolution and an individual-based model structure allow capturing the essential mechanisms necessary to go beyond mere PVA scenario ranking. We encourage researchers to carefully chose the temporal resolution and structure of their model aiming at (1) depicting the processes important for (meta)population dynamics of the species and (2) implementing the environmental change scenarios expected for their study system in the future, using the temporal resolution at which such changes are predicted to operate. KW - Temporal grain KW - Model complexity KW - Model comparison KW - Population dynamics KW - Individual-based model KW - Stage-based model Y1 - 2014 U6 - https://doi.org/10.1016/j.biocon.2013.12.004 SN - 0006-3207 SN - 1873-2917 VL - 169 SP - 345 EP - 354 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Radchuk, Viktoriia A1 - Johst, Karin A1 - Gröneveld, Juergen A1 - Grimm, Volker A1 - Schtickzelle, Nicolas T1 - Behind the scenes of population viability modeling predicting butterfly metapopulation dynamics under climate change JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Studies explaining the choice of model structure for population viability analysis (PVA) are rare and no such study exists for butterfly species, a focal group for conservation. Here, we describe in detail the development of a model to predict population viability of a glacial relict butterfly species, Boloria eunomia, under climate change. We compared four alternative formulations of an individual-based model, differing in the environmental factors acting on the survival of immature life stages: temperature (only temperature impact), weather (temperature, precipitation, and sunshine), temperature and parasitism, and weather and parasitism. Following pattern-oriented modeling, four observed patterns were used to contrast these models: one qualitative (response of population size to habitat parameters) and three quantitative ones describing population dynamics during eight years (mean and variability of population size, and magnitude of the temporal autocorrelation in yearly population growth rates). The four model formulations were not equally able to depict population dynamics under current environmental conditions; the model including only temperature was selected as the most parsimonious model sufficiently well reproducing the empirical patterns. We used all four model formulations to test a range of climate change scenarios that were characterized by changes in both mean and variability of the weather variables. All models predicted adverse effects of climate change and resulted in the same ranking of mean climate change scenarios. However, models differed in their absolute values of population viability measures, underlining the need to explicitly choose the most appropriate model formulation and avoid arbitrary usage of environmental drivers in a model. We conclude that further applications of pattern-oriented modeling to butterfly and other species are likely to help in identifying the key factors impacting the viability of certain taxa, which, ultimately, will aid and speed up informed management decisions for endangered species under climate change. KW - Individual-based model KW - Population viability analysis KW - Glacial relict species KW - Life cycle KW - Boloria eunomia KW - Pattern-oriented modeling KW - Model structure Y1 - 2013 U6 - https://doi.org/10.1016/j.ecolmodel.2013.03.014 SN - 0304-3800 VL - 259 IS - 2 SP - 62 EP - 73 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Radchuk, Viktoriia A1 - Kramer-Schadt, Stephanie A1 - Fickel, Jörns A1 - Wilting, Andreas T1 - Distributions of mammals in Southeast Asia: The role of the legacy of climate and species body mass JF - Journal of biogeography N2 - Aim Current species distributions are shaped by present and past biotic and abiotic factors. Here, we assessed whether abiotic factors (habitat availability) in combination with past connectivity and a biotic factor (body mass) can explain the unique distribution pattern of Southeast Asian mammals, which are separated by the enigmatic biogeographic transition zone, the Isthmus of Kra (IoK), for which no strong geophysical barrier exists. Location Southeast Asia. Taxon Mammals. Methods We projected habitat suitability for 125 mammal species using climate data for the present period and for two historic periods: mid-Holocene (6 ka) and last glacial maximum (LGM 21 ka). Next, we employed a phylogenetic linear model to assess how present species distributions were affected by the suitability of areas in these different periods, habitat connectivity during LGM and species body mass. Results Our results show that cooler climate during LGM provided suitable habitat south of IoK for species presently distributed north of IoK (in mainland Indochina). However, the potentially suitable habitat for these Indochinese species did not stretch very far southwards onto the exposed Sunda Shelf. Instead, we found that the emerged landmasses connecting Borneo and Sumatra provided suitable habitat for forest dependent Sundaic species. We show that for species whose current distribution ranges are mainly located in Indochina, the area of the distribution range that is located south of IoK is explained by the suitability of habitat in the past and present in combination with the species body mass. Main conclusions We demonstrate that a strong geophysical barrier may not be necessary for maintaining a biogeographic transition zone for mammals, but that instead a combination of abiotic and biotic factors may suffice. KW - habitat suitability KW - Isthmus of Kra KW - least-cost path KW - PanTHERIA KW - phylogenetic regression KW - species distribution model Y1 - 2019 U6 - https://doi.org/10.1111/jbi.13675 SN - 0305-0270 SN - 1365-2699 VL - 46 IS - 10 SP - 2350 EP - 2362 PB - Wiley CY - Hoboken ER -