TY - JOUR A1 - Angelopoulos, Michael A1 - Overduin, Pier Paul A1 - Westermann, Sebastian A1 - Tronicke, Jens A1 - Strauss, Jens A1 - Schirrmeister, Lutz A1 - Biskaborn, Boris A1 - Liebner, Susanne A1 - Maksimov, Georgii A1 - Grigoriev, Mikhail N. A1 - Grosse, Guido T1 - Thermokarst lake to lagoon transitions in Eastern Siberia BT - do submerged taliks refreeze? JF - Journal of geophysical research : Earth surface N2 - As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons, and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modeling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the center of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice-bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon had bedfast ice in spring. In bedfast ice areas, the electrical resistivity profiles suggested that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modeling showed that thermokarst lake taliks can refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 degrees C. This occurs, because the top-down chemical degradation of newly formed ice-bearing permafrost is slower than the refreezing of the talik. Hence, lagoons may precondition taliks with a layer of ice-bearing permafrost before encroachment by the sea, and this frozen layer may act as a cap on gas migration out of the underlying talik. KW - thermokarst lake KW - talik KW - lagoon KW - subsea permafrost KW - salt diffusion KW - Siberia Y1 - 2020 U6 - https://doi.org/10.1029/2019JF005424 SN - 2169-9003 SN - 2169-9011 VL - 125 IS - 10 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Angelopoulos, Michael A1 - Westermann, Sebastian A1 - Overduin, Pier Paul A1 - Faguet, Alexey A1 - Olenchenko, Vladimir A1 - Grosse, Guido A1 - Grigoriev, Mikhail N. T1 - Heat and salt flow in subsea permafrost modeled with CryoGRID2 JF - Journal of geophysical research : Earth surface N2 - Thawing of subsea permafrost can impact offshore infrastructure, affect coastal erosion, and release permafrost organic matter. Thawing is usually modeled as the result of heat transfer, although salt diffusion may play an important role in marine settings. To better quantify nearshore subsea permafrost thawing, we applied the CryoGRID2 heat diffusion model and coupled it to a salt diffusion model. We simulated coastline retreat and subsea permafrost evolution as it develops through successive stages of a thawing sequence at the Bykovsky Peninsula, Siberia. Sensitivity analyses for seawater salinity were performed to compare the results for the Bykovsky Peninsula with those of typical Arctic seawater. For the Bykovsky Peninsula, the modeled ice-bearing permafrost table (IBPT) for ice-rich sand and an erosion rate of 0.25m/year was 16.7 m below the seabed 350m offshore. The model outputs were compared to the IBPT depth estimated from coastline retreat and electrical resistivity surveys perpendicular to and crossing the shoreline of the Bykovsky Peninsula. The interpreted geoelectric data suggest that the IBPT dipped to 15-20m below the seabed at 350m offshore. Both results suggest that cold saline water forms beneath grounded ice and floating sea ice in shallow water, causing cryotic benthic temperatures. The freezing point depression produced by salt diffusion can delay or prevent ice formation in the sediment and enhance the IBPT degradation rate. Therefore, salt diffusion may facilitate the release of greenhouse gasses to the atmosphere and considerably affect the design of offshore and coastal infrastructure in subsea permafrost areas. KW - subsea permafrost KW - salt diffusion KW - CryoGRID KW - Lena Delta KW - Bykovsky Peninsula KW - electrical resistivity Y1 - 2019 U6 - https://doi.org/10.1029/2018JF004823 SN - 2169-9003 SN - 2169-9011 VL - 124 IS - 4 SP - 920 EP - 937 PB - American Geophysical Union CY - Hoboken ER - TY - GEN A1 - Arboleda-Zapata, Mauricio A1 - Angelopoulos, Michael A1 - Overduin, Pier Paul A1 - Grosse, Guido A1 - Jones, Benjamin M. A1 - Tronicke, Jens T1 - Exploring the capabilities of electrical resistivity tomography to study subsea permafrost T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submergence by warm and saline waters increases the rate of inundated permafrost thaw compared to sub-aerial thawing on land. Studying the contact between the unfrozen and frozen sediments below the seabed, also known as the ice-bearing permafrost table (IBPT), provides valuable information to understand the evolution of sub-aquatic permafrost, which is key to improving and understanding coastal erosion prediction models and potential greenhouse gas emissions. In this study, we use data from 2D electrical resistivity tomography (ERT) collected in the nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g., seawater depth and resistivity) to image and study the subsea permafrost. The inversion of 2D ERT data sets is commonly performed using deterministic approaches that favor smoothed solutions, which are typically interpreted using a user-specified resistivity threshold to identify the IBPT position. In contrast, to target the IBPT position directly during inversion, we use a layer-based model parameterization and a global optimization approach to invert our ERT data. This approach results in ensembles of layered 2D model solutions, which we use to identify the IBPT and estimate the resistivity of the unfrozen and frozen sediments, including estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and perform sensitivity analyses to study, in a simpler way, the correlations and influences of our model parameters. The set of methods provided in this study may help to further exploit ERT data collected in such permafrost environments as well as for the design of future field experiments. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1285 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571234 SN - 1866-8372 IS - 1285 SP - 4423 EP - 4445 ER - TY - JOUR A1 - Arboleda-Zapata, Mauricio A1 - Angelopoulos, Michael A1 - Overduin, Pier Paul A1 - Grosse, Guido A1 - Jones, Benjamin M. A1 - Tronicke, Jens T1 - Exploring the capabilities of electrical resistivity tomography to study subsea permafrost JF - The Cryosphere N2 - Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submergence by warm and saline waters increases the rate of inundated permafrost thaw compared to sub-aerial thawing on land. Studying the contact between the unfrozen and frozen sediments below the seabed, also known as the ice-bearing permafrost table (IBPT), provides valuable information to understand the evolution of sub-aquatic permafrost, which is key to improving and understanding coastal erosion prediction models and potential greenhouse gas emissions. In this study, we use data from 2D electrical resistivity tomography (ERT) collected in the nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g., seawater depth and resistivity) to image and study the subsea permafrost. The inversion of 2D ERT data sets is commonly performed using deterministic approaches that favor smoothed solutions, which are typically interpreted using a user-specified resistivity threshold to identify the IBPT position. In contrast, to target the IBPT position directly during inversion, we use a layer-based model parameterization and a global optimization approach to invert our ERT data. This approach results in ensembles of layered 2D model solutions, which we use to identify the IBPT and estimate the resistivity of the unfrozen and frozen sediments, including estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and perform sensitivity analyses to study, in a simpler way, the correlations and influences of our model parameters. The set of methods provided in this study may help to further exploit ERT data collected in such permafrost environments as well as for the design of future field experiments. Y1 - 2022 U6 - https://doi.org/10.5194/tc-16-4423-2022 SN - 1994-0424 VL - 16 SP - 4423 EP - 4445 PB - Copernicus CY - Katlenburg-Lindau ER - TY - JOUR A1 - Creighton, Andrea L. A1 - Parsekian, Andrew D. A1 - Angelopoulos, Michael A1 - Jones, Benjamin M. A1 - Bondurant, A. A1 - Engram, M. A1 - Lenz, Josefine A1 - Overduin, Pier Paul A1 - Grosse, Guido A1 - Babcock, E. A1 - Arp, Christopher D. T1 - Transient Electromagnetic Surveys for the Determination of Talik Depth and Geometry Beneath Thermokarst Lakes JF - Journal of geophysical research : Solid earth N2 - Thermokarst lakes are prevalent in Arctic coastal lowland regions and sublake permafrost degradation and talik development contributes to greenhouse gas emissions by tapping the large permafrost carbon pool. Whereas lateral thermokarst lake expansion is readily apparent through remote sensing and shoreline measurements, sublake thawed sediment conditions and talik growth are difficult to measure. Here we combine transient electromagnetic surveys with thermal modeling, backed up by measured permafrost properties and radiocarbon ages, to reveal closed-talik geometry associated with a thermokarst lake in continuous permafrost. To improve access to talik geometry data, we conducted surveys along three transient electromagnetic transects perpendicular to lakeshores with different decadal-scale expansion rates of 0.16, 0.38, and 0.58m/year. We modeled thermal development of the talik using boundary conditions based on field data from the lake, surrounding permafrost and a borehole, independent of the transient electromagnetics. A talik depth of 91m was determined from analysis of the transient electromagnetic surveys. Using a lake initiation age of 1400years before present and available subsurface properties the results from thermal modeling of the lake center arrived at a best estimate talk depth of 80m, which is on the same order of magnitude as the results from the transient electromagnetic survey. Our approach has provided a noninvasive estimate of talik geometry suitable for comparable settings throughout circum-Arctic coastal lowland regions. KW - geophysics KW - permafrost KW - thermokarst KW - electromagnetic KW - lake Y1 - 2018 U6 - https://doi.org/10.1029/2018JB016121 SN - 2169-9313 SN - 2169-9356 VL - 123 IS - 11 SP - 9310 EP - 9323 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Irrgang, Anna M. A1 - Bendixen, Mette A1 - Farquharson, Louise M. A1 - Baranskaya, Alisa A1 - Erikson, Li H. A1 - Gibbs, Ann E. A1 - Ogorodov, Stanislav A. A1 - Overduin, Pier Paul A1 - Lantuit, Hugues A1 - Grigoriev, Mikhail N. A1 - Jones, Benjamin M. T1 - Drivers, dynamics and impacts of changing Arctic coasts JF - Nature reviews earth and environment N2 - Arctic coasts are vulnerable to the effects of climate change, including rising sea levels and the loss of permafrost, sea ice and glaciers. Assessing the influence of anthropogenic warming on Arctic coastal dynamics, however, is challenged by the limited availability of observational, oceanographic and environmental data. Yet, with the majority of permafrost coasts being erosive, coupled with projected intensification of erosion and flooding, understanding these changes is critical. In this Review, we describe the morphological diversity of Arctic coasts, discuss important drivers of coastal change, explain the specific sensitivity of Arctic coasts to climate change and provide an overview of pan-Arctic shoreline change and its multifaceted impacts. Arctic coastal changes impact the human environment by threatening coastal settlements, infrastructure, cultural sites and archaeological remains. Changing sediment fluxes also impact the natural environment through carbon, nutrient and pollutant release on a magnitude that remains difficult to predict. Increasing transdisciplinary and interdisciplinary collaboration efforts will build the foundation for identifying sustainable solutions and adaptation strategies to reduce future risks for those living on, working at and visiting the rapidly changing Arctic coast. Y1 - 2022 U6 - https://doi.org/10.1038/s43017-021-00232-1 SN - 2662-138X VL - 3 IS - 1 SP - 39 EP - 54 PB - Nature Research CY - London ER - TY - JOUR A1 - Irrgang, Anna Maria A1 - Lantuit, Hugues A1 - Manson, Gavin K. A1 - Günther, Frank A1 - Grosse, Guido A1 - Overduin, Pier Paul T1 - Variability in rates of coastal change along the Yukon Coast, 1951 to 2015 JF - Journal of geophysical research : Earth surface N2 - To better understand the reaction of Arctic coasts to increasing environmental pressure, coastal changes along a 210-km length of the Yukon Territory coast in north-west Canada were investigated. Shoreline positions were acquired from aerial and satellite images between 1951 and 2011. Shoreline change rates were calculated for multiple time periods along the entire coast and at six key sites. Additionally, Differential Global Positioning System (DGPS) measurements of shoreline positions from seven field sites were used to analyze coastal dynamics from 1991 to 2015 at higher spatial resolution. The whole coast has a consistent, spatially averaged mean rate of shoreline change of 0.7 +/- 0.2 m/a with a general trend of decreasing erosion from west to east. Additional data from six key sites shows that the mean shoreline change rate decreased from -1.3 +/- 0.8 (1950s-1970s) to -0.5 +/- 0.6 m/a (1970s-1990s). This was followed by a significant increase in shoreline change to -1.3 +/- 0.3 m/a in the 1990s to 2011. This increase is confirmed by DGPS measurements that indicate increased erosion rates at local rates up to -8.9 m/a since 2006. Ground surveys and observations with remote sensing data indicate that the current rate of shoreline retreat along some parts of the Yukon coast is higher than at any time before in the 64-year-long observation record. Enhanced availability of material in turn might favor the buildup of gravel features, which have been growing in extent throughout the last six decades. Plain Language Summary The Arctic is warming, but the impacts on its coasts are not well documented. To better understand the reaction of Arctic coasts to increasing environmental pressure, shoreline position changes along a 210-km length of the Yukon Territory coast in northwest Canada were investigated for the time period from 1951 to 2015. Shoreline positions were extracted from historical aerial images from the 1950s, 1970s, and 1990s and from satellite images from 2011. Additionally, measurements of shoreline positions from field sites were used to analyze coastal dynamics from 1991 to 2015. The mean shoreline change rate was -1.3 m/a between the 1950s and 1970s and followed by a decrease to -0.5 m/a between the 1970s to 1990s. This was followed by a significant increase in mean shoreline change rates again to -1.3 m/a in the 1990s to 2011 time period. This acceleration in erosion is confirmed by field measurements that indicate increased erosion rates at high local rates up to -8.9 m/a since 2006. Enhanced coastal erosion might, in turn, favor the buildup of gravel features, which have been growing in extent throughout the last six decades. Y1 - 2018 U6 - https://doi.org/10.1002/2017JF004326 SN - 2169-9003 SN - 2169-9011 VL - 123 IS - 4 SP - 779 EP - 800 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Mitzscherling, Julia A1 - Horn, Fabian A1 - Winterfeld, Maria A1 - Mahler, Linda A1 - Kallmeyer, Jens A1 - Overduin, Pier Paul A1 - Schirrmeister, Lutz A1 - Winkel, Matthias A1 - Grigoriev, Mikhail N. A1 - Wagner, Dirk A1 - Liebner, Susanne T1 - Microbial community composition and abundance after millennia of submarine permafrost warming JF - Biogeosciences N2 - Warming of the Arctic led to an increase in permafrost temperatures by about 0.3 degrees C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability, and diffusivity and could in the long term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore-offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 degrees C. We analysed the in situ development of bacterial abundance and community composition through total cell counts (TCCs), quantitative PCR of bacterial gene abundance, and amplicon sequencing and correlated the microbial community data with temperature, pore water chemistry, and sediment physicochemical parameters. On timescales of centuries, permafrost warming coincided with an overall decreasing microbial abundance, whereas millennia after warming microbial abundance was similar to cold onshore permafrost. In addition, the dissolved organic carbon content of all cores was lowest in submarine permafrost after millennial-scale warming. Based on correlation analysis, TCC, unlike bacterial gene abundance, showed a significant rank-based negative correlation with increasing temperature, while bacterial gene copy numbers showed a strong negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with the pore water stable isotopes delta O-18 and delta D, as well as with depth. The bacterial community showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes, and Proteobacteria, which are amongst the microbial taxa that were also found to be active in other frozen permafrost environments. We suggest that, millennia after permafrost warming by over 10 degrees C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleoenvironment and not a direct effect through warming. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-3941-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 19 SP - 3941 EP - 3958 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Morgenstern, Anne A1 - Overduin, Pier Paul A1 - Günther, Frank A1 - Stettner, Samuel A1 - Ramage, Justine A1 - Schirrmeister, Lutz A1 - Grigoriev, Mikhail N. A1 - Grosse, Guido T1 - Thermo-erosional valleys in Siberian ice-rich permafrost JF - Permafrost and Periglacial Processes N2 - Thermal erosion is a major mechanism of permafrost degradation, resulting in characteristic landforms. We inventory thermo-erosional valleys in ice-rich coastal lowlands adjacent to the Siberian Laptev Sea based on remote sensing, Geographic Information System (GIS), and field investigations for a first regional assessment of their spatial distribution and characteristics. Three study areas with similar geological (Yedoma Ice Complex) but diverse geomorphological conditions vary in valley areal extent, incision depth, and branching geometry. The most extensive valley networks are incised deeply (up to 35 m) into the broad inclined lowland around Mamontov Klyk. The flat, low-lying plain forming the Buor Khaya Peninsula is more degraded by thermokarst and characterized by long valleys of lower depth with short tributaries. Small, isolated Yedoma Ice Complex remnants in the Lena River Delta predominantly exhibit shorter but deep valleys. Based on these hydrographical network and topography assessments, we discuss geomorphological and hydrological connections to erosion processes. Relative catchment size along with regional slope interact with other Holocene relief-forming processes such as thermokarst and neotectonics. Our findings suggest that thermo-erosional valleys are prominent, hitherto overlooked permafrost degradation landforms that add to impacts on biogeochemical cycling, sediment transport, and hydrology in the degrading Siberian Yedoma Ice Complex. KW - geomorphology KW - periglacial landscapes KW - permafrost degradation KW - thermal KW - erosion KW - valley distribution KW - Yedoma Ice Complex Y1 - 2020 U6 - https://doi.org/10.1002/ppp.2087 SN - 1045-6740 SN - 1099-1530 VL - 32 IS - 1 SP - 59 EP - 75 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Overduin, Pier Paul A1 - Haberland, Christian A1 - Ryberg, Trond A1 - Kneier, Fabian A1 - Jacobi, Tim A1 - Grigoriev, Mikhail N. A1 - Ohrnberger, Matthias T1 - Submarine permafrost depth from ambient seismic noise JF - Geophysical research letters N2 - Permafrost inundated since the last glacial maximum is degrading, potentially releasing trapped or stabilized greenhouse gases, but few observations of the depth of ice-bonded permafrost (IBP) below the seafloor exist for most of the arctic continental shelf. We use spectral ratios of the ambient vibration seismic wavefield, together with estimated shear wave velocity from the dispersion curves of surface waves, for estimating the thickness of the sediment overlying the IBP. Peaks in spectral ratios modeled for three-layered 1-D systems correspond with varying thickness of the unfrozen sediment. Seismic receivers were deployed on the seabed around Muostakh Island in the central Laptev Sea, Siberia. We derive depths of the IBP between 3.7 and 20.7m15%, increasing with distance from the shoreline. Correspondence between expected permafrost distribution, modeled response, and observational data suggests that the method is promising for the determination of the thickness of unfrozen sediment. KW - submarine permafrost KW - ambient noise KW - Siberia KW - continental shelf Y1 - 2015 U6 - https://doi.org/10.1002/2015GL065409 SN - 0094-8276 SN - 1944-8007 VL - 42 IS - 18 SP - 7581 EP - 7588 PB - American Geophysical Union CY - Washington ER -