TY - JOUR A1 - Bapolisi, Alain Murhimalika A1 - Kielb, Patrycja A1 - Bekir, Marek A1 - Lehnen, Anne-Catherine A1 - Radon, Christin A1 - Laroque, Sophie A1 - Wendler, Petra A1 - Müller-Werkmeister, Henrike A1 - Hartlieb, Matthias T1 - Antimicrobial polymers of linear and bottlebrush architecture BT - Probing the membrane interaction and physicochemical properties JF - Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation N2 - Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs. KW - antimicrobial polymers KW - bottlebrush copolymers KW - liposomes KW - membrane KW - interactions KW - quartz crystal microbalance Y1 - 2022 U6 - https://doi.org/10.1002/marc.202200288 SN - 1521-3927 SN - 1022-1336 VL - 43 IS - 19 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Martiel, Isabelle A1 - Müller-Werkmeister, Henrike A1 - Cohen, Aina E. T1 - Strategies for sample delivery for femtosecond crystallography JF - Acta Crystallographica : Section D, Structural biology N2 - Highly efficient data-collection methods are required for successful macromolecular crystallography (MX) experiments at X-ray free-electron lasers (XFELs). XFEL beamtime is scarce, and the high peak brightness of each XFEL pulse destroys the exposed crystal volume. It is therefore necessary to combine diffraction images from a large number of crystals (hundreds to hundreds of thousands) to obtain a final data set, bringing about sample-refreshment challenges that have previously been unknown to the MX synchrotron community. In view of this experimental complexity, a number of sample delivery methods have emerged, each with specific requirements, drawbacks and advantages. To provide useful selection criteria for future experiments, this review summarizes the currently available sample delivery methods, emphasising the basic principles and the specific sample requirements. Two main approaches to sample delivery are first covered: (i) injector methods with liquid or viscous media and (ii) fixed-target methods using large crystals or using microcrystals inside multi-crystal holders or chips. Additionally, hybrid methods such as acoustic droplet ejection and crystal extraction are covered, which combine the advantages of both fixed-target and injector approaches. KW - sample delivery KW - serial femtosecond crystallography KW - protein microcrystals KW - XFELs Y1 - 2019 U6 - https://doi.org/10.1107/S2059798318017953 SN - 2059-7983 SN - 0907-4449 VL - 75 SP - 160 EP - 177 PB - Bognor Regis CY - Wiley ER - TY - JOUR A1 - Mehrabi, Pedram A1 - Schulz, Eike C. A1 - Dsouza, Raison A1 - Müller-Werkmeister, Henrike A1 - Tellkamp, Friedjof A1 - Miller, R. J. Dwayne A1 - Pai, Emil F. T1 - Time-resolved crystallography reveals allosteric communication aligned with molecular breathing JF - Science N2 - A comprehensive understanding of protein function demands correlating structure and dynamic changes. Using time-resolved serial synchrotron crystallography, we visualized half-of-the-sites reactivity and correlated molecular-breathing motions in the enzyme fluoroacetate dehalogenase. Eighteen time points from 30 milliseconds to 30 seconds cover four turnover cycles of the irreversible reaction. They reveal sequential substrate binding, covalent-intermediate formation, setup of a hydrolytic water molecule, and product release. Small structural changes of the protein mold and variations in the number and placement of water molecules accompany the various chemical steps of catalysis. Triggered by enzyme-ligand interactions, these repetitive changes in the protein framework’s dynamics and entropy constitute crucial components of the catalytic machinery. Y1 - 2019 U6 - https://doi.org/10.1126/science.aaw9904 SN - 0036-8075 SN - 1095-9203 VL - 365 IS - 6458 SP - 1167 EP - 1170 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - GEN A1 - Mehrabi, Pedram A1 - Schulz, Eike A1 - Müller-Werkmeister, Henrike A1 - Persch, Elke A1 - De Gasparo, Raoul A1 - Diederich, Francois A1 - Tellkamp, Friedjof A1 - Pai, Emil F. A1 - Miller, R. J. Dwayne T1 - Time-resolved crystallography via an interlacing approach allows elucidation of milliseconds to seconds time delays T2 - Acta Crystallographica Section A KW - Time-resolved crystallography KW - crystallography KW - enzymology KW - method development Y1 - 2018 U6 - https://doi.org/10.1107/S205327331809321X SN - 2053-2733 VL - 74 SP - E138 EP - E138 PB - International Union of Crystallography CY - Chester ER - TY - JOUR A1 - Schulz, Eike C. A1 - Mehrabi, Pedram A1 - Müller-Werkmeister, Henrike A1 - Tellkamp, Friedjof A1 - Jha, Ajay A1 - Stuart, William A1 - Persch, Elke A1 - De Gasparo, Raoul A1 - Diederich, François A1 - Pai, Emil F. A1 - Miller, R. J. Dwayne T1 - The hit-and-return system enables efficient time-resolved serial synchrotron crystallography JF - Nature methods : techniques for life scientists and chemists N2 - We present a ‘hit-and-return’ (HARE) method for time-resolved serial synchrotron crystallography with time resolution from milliseconds to seconds or longer. Timing delays are set mechanically, using the regular pattern in fixed-target crystallography chips and a translation stage system. Optical pump-probe experiments to capture intermediate structures of fluoroacetate dehalogenase binding to its ligand demonstrated that data can be collected at short (30 ms), medium (752 ms) and long (2,052 ms) intervals. KW - Biophysical chemistry KW - Enzymes KW - Molecular biophysics KW - X-ray crystallography Y1 - 2018 U6 - https://doi.org/10.1038/s41592-018-0180-2 SN - 1548-7091 SN - 1548-7105 VL - 15 IS - 11 SP - 901 EP - 904 PB - Nature Publishing Group (London) CY - London ER - TY - JOUR A1 - Zaitsev-Doyle, John J. A1 - Puchert, Anke A1 - Pfeifer, Yannik A1 - Yan, Hao A1 - Yorke, Briony A. A1 - Müller-Werkmeister, Henrike A1 - Uetrecht, Charlotte A1 - Rehbein, Julia A1 - Huse, Nils A1 - Pearson, Arwen R. A1 - Sans, Marta T1 - Synthesis and characterisation of alpha-carboxynitrobenzyl photocaged l-aspartates for applications in time-resolved structural biology JF - RSC Advances N2 - We report a new synthetic route to a series of a-carboxynitrobenzyl photocaged L-aspartates for application in time-resolved structural biology. The resulting compounds were characterised in terms of UV/Vis absorption properties, aqueous solubility and stability, and photocleavage rates (tau = ms to ms) and quantum yields (phi = 0.05 to 0.14). Y1 - 2019 U6 - https://doi.org/10.1039/c9ra00968j SN - 2046-2069 VL - 9 IS - 15 SP - 8695 EP - 8699 PB - Royal Society of Chemistry CY - Cambridge ER -