TY - CHAP A1 - Geschka, Sandra A1 - Kretschmer, A. A1 - Sharkovska, J. A1 - Evgenov, O. V. A1 - Lawrenz, Bettina A1 - Stasch, Johannes-Peter A1 - Hocher, Berthold T1 - Soluble guanylate cyclase stimulation prevents fibrotic tissue Remodelling and improves survival in salt-sensitive dahl rats T2 - Journal of vascular research Y1 - 2011 SN - 1018-1172 VL - 48 IS - 4 SP - 171 EP - 171 PB - Karger CY - Basel ER - TY - JOUR A1 - Geschka, Sandra A1 - Kretschmer, Axel A1 - Sharkovska, Yuliya A1 - Evgenov, Oleg V. A1 - Lawrenz, Bettina A1 - Hucke, Andreas A1 - Hocher, Berthold A1 - Stasch, Johannes-Peter T1 - Soluble guanylate cyclase stimulation prevents fibrotic tissue remodeling and improves survival in salt-sensitive dahl rats JF - PLoS one N2 - Background: A direct pharmacological stimulation of soluble guanylate cyclase (sGC) is an emerging therapeutic approach to the management of various cardiovascular disorders associated with endothelial dysfunction. Novel sGC stimulators, including riociguat (BAY 63-2521), have a dual mode of action: They sensitize sGC to endogenously produced nitric oxide (NO) and also directly stimulate sGC independently of NO. Little is known about their effects on tissue remodeling and degeneration and survival in experimental malignant hypertension. Methods and Results: Mortality, hemodynamics and biomarkers of tissue remodeling and degeneration were assessed in Dahl salt-sensitive rats maintained on a high salt diet and treated with riociguat (3 or 10 mg/kg/d) for 14 weeks. Riociguat markedly attenuated systemic hypertension, improved systolic heart function and increased survival from 33% to 85%. Histological examination of the heart and kidneys revealed that riociguat significantly ameliorated fibrotic tissue remodeling and degeneration. Correspondingly, mRNA expression of the pro-fibrotic biomarkers osteopontin (OPN), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and plasminogen activator inhibitor-1 (PAI-1) in the myocardium and the renal cortex was attenuated by riociguat. In addition, riociguat reduced plasma and urinary levels of OPN, TIMP-1, and PAI-1. Conclusions: Stimulation of sGC by riociguat markedly improves survival and attenuates systemic hypertension and systolic dysfunction, as well as fibrotic tissue remodeling in the myocardium and the renal cortex in a rodent model of pressure and volume overload. These findings suggest a therapeutic potential of sGC stimulators in diseases associated with impaired cardiovascular and renal functions. Y1 - 2011 U6 - https://doi.org/10.1371/journal.pone.0021853 SN - 1932-6203 VL - 6 IS - 7 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - Hoffmann, Linda Sarah A1 - Kretschmer, Axel A1 - Lawrenz, Bettina A1 - Hocher, Berthold A1 - Stasch, Johannes-Peter T1 - Chronic activation of heme free Guanylate Cyclase leads to renal protection in Dahl salt-sensitive rats T2 - Postprints der Universität Potsdam : Mathematisch naturwissenschaftliche Reihe N2 - The nitric oxide (NO)/soluble guanylate cyclase (sGC)/cyclic guanosine monophasphate (cGMP)-signalling pathway is impaired under oxidative stress conditions due to oxidation and subsequent loss of the prosthetic sGC heme group as observed in particular in chronic renal failure. Thus, the pool of heme free sGC is increased under pathological conditions. sGC activators such as cinaciguat selectively activate the heme free form of sGC and target the disease associated enzyme. In this study, a therapeutic effect of long-term activation of heme free sGC by the sGC activator cinaciguat was investigated in an experimental model of salt-sensitive hypertension, a condition that is associated with increased oxidative stress, heme loss from sGC and development of chronic renal failure. For that purpose Dahl/ss rats, which develop severe hypertension upon high salt intake, were fed a high salt diet (8% NaCl) containing either placebo or cinaciguat for 21 weeks. Cinaciguat markedly improved survival and ameliorated the salt-induced increase in blood pressure upon treatment with cinaciguat compared to placebo. Renal function was significantly improved in the cinaciguat group compared to the placebo group as indicated by a significantly improved glomerular filtration rate and reduced urinary protein excretion. This was due to anti-fibrotic and antiinflammatory effects of the cinaciguat treatment. Taken together, this is the first study showing that long-term activation of heme free sGC leads to renal protection in an experimental model of hypertension and chronic kidney disease. These results underline the promising potential of cinaciguat to treat renal diseases by targeting the disease associated heme free form of sGC. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 489 KW - signal-transduction system KW - nitric-oxide KW - oxidative stress KW - independent activation KW - endothelial dysfunction KW - pulmonary-hypertension KW - cardiovascular-disease KW - therapeutic target KW - heart-failure KW - cyclic-GMP Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-408088 SN - 1866-8372 IS - 489 ER - TY - JOUR A1 - Sharkovska, Yuliya A1 - Kalk, Philipp A1 - Lawrenz, Bettina A1 - Godes, Michael A1 - Hoffmann, Linda Sarah A1 - Wellkisch, Kathrin A1 - Geschka, Sandra A1 - Relle, Katharina A1 - Hocher, Berthold A1 - Stasch, Johannes-Peter T1 - Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low- renin and high-renin models N2 - Objectives The nitric oxide-soluble guanylate cyclase (sGC)-cGMP signal transduction pathway is impaired in different cardiovascular diseases, including pulmonary hypertension, heart failure and arterial hypertension. Riociguat is a novel stimulator of soluble guanylate cyclase (sGC). However, little is known about the effects of sGC stimulators in experimental models of hypertension. We thus investigated the cardio-renal protective effects of riociguat in low- renin and high-renin rat models of hypertension. Methods The vasorelaxant effect of riociguat was tested in vitro on isolated saphenous artery rings of normal and nitrate tolerant rabbits. The cardiovascular in-vivo effects of sGC stimulation were evaluated in hypertensive renin-transgenic rats treated with the nitric oxide-synthase inhibitor N- nitro-L-arginine methyl ester (L-NAME) (high-renin model) and in rats with 5/6 nephrectomy (low-renin model). Results In both animal models, riociguat treatment improved survival and normalized blood pressure. Moreover, in the L-NAME study part, riociguat reduced cardiac target organ damage as indicated by lower plasma ANP, lower relative left ventricular weight and lower cardiac interstitial fibrosis, and reduced renal target organ damage as indicated by lower plasma creatinine and urea, less glomerulosclerosis and less renal interstitial fibrosis. In the 5/6 nephrectomy study part, riociguat reduced cardiac target organ damage as indicated by lower plasma ANP, lower relative left ventricular weight, lower myocyte diameter and lower arterial media/lumen ratio, and reduced renal target organ damage as indicated by improved creatinine clearance and less renal interstitial fibrosis. Conclusion We demonstrate for the first time that the novel sGC stimulator riociguat shows in two independent models of hypertension a potent protection against cardiac and renal target organ damage. J Hypertens 28: 1666-1675 (c) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins. Y1 - 2010 UR - http://journals.lww.com/jhypertension/pages/default.aspx U6 - https://doi.org/10.1097/Hjh.0b013e32833b558c SN - 0263-6352 ER -