TY - JOUR A1 - Aravopoulou, Dionysia A1 - Kyriakos, Konstantinos A1 - Miasnikova, Anna A1 - Laschewsky, Andre A1 - Papadakis, Christine M. A1 - Kyritsis, Apostolos T1 - Comparative Investigation of the Thermoresponsive Behavior of Two Diblock Copolymers Comprising PNIPAM and PMDEGA Blocks JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - The thermoresponsive behavior of two diblock copolymers PS-b-PNIPAM and PS-b-PMDEGA, which both comprise a hydrophobic polystyrene (PS) block but different thermoresponsive blocks, also differing in length, poly(N-isopropylacrylamide) (PNIPAM) and poly(methoxy diethylene glycol acrylate) (PMDEGA), respectively, was comparatively investigated in a wide temperature range. Concentrated aqueous solutions containing 25 wt % polymer were studied by small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and broadband dielectric spectroscopy (BDS). DSC measurements show that, during the demixing phase transition, the hydration number per oligo(ethylene glycol) side chain in the PS-b-PMDEGA solution decreases rather gradually, even up to 20 °C above the onset of the transition, i.e., the cloud point (CP). In contrast, the PS-b-PNIPAM solution exhibits an abrupt, stepwise dehydration behavior at its CP, indicated by the sharp, narrow endothermic peak. BDS measurements suggest that the organization of the expelled water during the phase transition and the subsequent evolution of the micellar aggregates are different for the two copolymers. In the PS-b-PMDEGA solution, the long-range charge transport process changes significantly at its CP and strong interfacial polarization processes appear, probably due to charge accumulation at the interfaces between the micellar aggregates and the aqueous medium. On the contrary, in the PS-b-PNIPAM solution, the phase transition has only a marginal effect on the long-range conduction process and is accompanied by a reduction in the high-frequency (1 MHz) dielectric permittivity, ε′. The latter effect is attributed to the reduced polarization strength of local chain modes due to an enhancement of intra- and interchain hydrogen bonds (HBs) in the polymer-rich phase during the water detaching process. Surprisingly, our BDS measurements indicate that prior to both the demixing and remixing processes the local chain mobility increases temporally. Our dielectric studies suggest that for PS-b-PNIPAM the water detaching process initiates a few degrees below CP and that the local chain mobility and intra- and/or interchain HBs of the PNIPAM blocks may control its thermoresponsive behavior. Dielectric “jump” experiments show that the kinetics of micellar aggregation in the PS-b-PMDEGA solution is slower than that in the PS-b-PNIPAM solution and is independent of the target temperature within the two-phase region. From the experimental point of view, it is shown that the dielectric susceptibility, especially, the dielectric permittivity, ε′, is a well-suited probe for monitoring both the reversible changes in the molecular dipolar bond polarizability and the long-range interfacial polarization at the phase transition. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcb.7b09647 SN - 1520-6106 VL - 122 IS - 9 SP - 2655 EP - 2668 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Couturier, Jean-Philippe A1 - Wischerhoff, Erik A1 - Bernin, Robert A1 - Hettrich, Cornelia A1 - Koetz, Joachim A1 - Sutterlin, Martin A1 - Tiersch, Brigitte A1 - Laschewsky, Andre T1 - Thermoresponsive Polymers and Inverse Opal Hydrogels for the Detection of Diols JF - Langmuir N2 - Responsive inverse opal hydrogels functionalized by boroxole moieties were synthesized and explored as sensor platforms for various low molar mass as well as polymeric diols and polyols, including saccharides, glycopolymers and catechols, by exploiting the diol induced modulation of their structural color. The underlying thermoresponsive water-soluble copolymers and hydrogels exhibit a coil-to-globule or volume phase transition, respectively, of the LCST-type. They were prepared from oligoethylene oxide methacrylate (macro)monomers and functionalized via copolymerization to bear benzoboroxole moieties. The resulting copolymers represent weak polyacids, which can bind specifically to diols within an appropriate pH window. Due to the resulting modulation of the overall hydrophilicity of the systems and the consequent shift of their phase transition temperature, the usefulness of such systems for indicating the presence of catechols, saccharides, and glycopolymers was studied, exploiting the diol/polyol induced shifts of the soluble polymers’ cloud point, or the induced changes of the hydrogels’ swelling. In particular, the increased acidity of benzoboroxoles compared to standard phenylboronic acids allowed performing the studies in PBS buffer (phosphate buffered saline) at the physiologically relevant pH of 7.4. The inverse opals constructed of these thermo- and analyte-responsive hydrogels enabled following the binding of specific diols by the induced shift of the optical stop band. Their highly porous structure enabled the facile and specific optical detection of not only low molar mass but also of high molar mass diol/polyol analytes such as glycopolymers. Accordingly, such thermoresponsive inverse opal systems functionalized with recognition units represent attractive and promising platforms for the facile sensing of even rather big analytes by simple optical means, or even by the bare eye. Y1 - 2016 U6 - https://doi.org/10.1021/acs.langmuir.6b00803 SN - 0743-7463 VL - 32 SP - 4333 EP - 4345 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Debsharma, Tapas A1 - Behrendt, Felix Nicolas A1 - Laschewsky, Andre A1 - Schlaad, Helmut T1 - Ring-opening metathesis polymerization of biomass-derived levoglucosenol JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker N2 - The readily available cellulose-derived bicyclic compound levoglucosenol was polymerized through ring-opening metathesis polymerization (ROMP) to yield polylevoglucosenol as a novel type of biomass-derived thermoplastic polyacetal, which, unlike polysaccharides, contains cyclic as well as linear segments in its main chain. High-molar-mass polyacetals with apparent weight-average molar masses of up to 100kgmol(-1) and dispersities of approximately 2 were produced despite the non-living/controlled character of the polymerization due to irreversible deactivation or termination of the catalyst/active chain ends. The resulting highly functionalized polyacetals are glassy in bulk with a glass transition temperature of around 100 degrees C. In analogy to polysaccharides, polylevoglucosenol degrades slowly in an acidic environment. KW - degradable polymers KW - metathesis KW - ring-opening polymerization KW - sustainable chemistry KW - thermoplastics Y1 - 2019 U6 - https://doi.org/10.1002/anie.201814501 SN - 1433-7851 SN - 1521-3773 VL - 58 IS - 20 SP - 6718 EP - 6721 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Debsharma, Tapas A1 - Schmidt, Bernd A1 - Laschewsky, Andre A1 - Schlaad, Helmut T1 - Ring-opening metathesis polymerization of unsaturated carbohydrate derivatives BT - levoglucosenyl alkyl ethers JF - Macromolecules : a publication of the American Chemical Society N2 - A series of biomass-derived levoglucosenyl alkyl ethers (alkyl = methyl, ethyl, n-propyl, isopropyl, and n-butyl) were synthesized and polymerized by ring-opening olefin metathesis polymerization using the Grubbs catalyst C793 at room temperature. Polymerizations were successfully performed in conventional solvents such as 1,4-dioxane and dichloromethane as well as in polar aprotic "green" solvents such as 2-methyltetrahydrofuran, dihydrolevoglucosenone (Cyrene), and ethyl acetate. The prepared polyacetals with degrees of polymerization of similar to 100 exhibit Schulz-Flory-type molar mass distributions and are thermoplastic materials with rather low glass transition temperatures in the range of 43-0 degrees C depending on the length of the alkyl substituent. Kinetic studies revealed that the polymerization proceeded rapidly to a steady state with a certain minimum monomer concentration threshold. When the steady state was reached, just about half of the [Ru] catalyst had been effective to initiate the polymerization, indicating that the initiation step was a slow process. The remaining catalyst was still active and did no longer react with monomers but with in-chain double bonds, cutting the formed polymer chains into shorter fragments. In the long term, all catalyst was consumed and propagating [Ru] chain ends were deactivated by the elimination of [Ru] from the chain ends to form inactive chains with terminal aldehyde groups. Y1 - 2021 U6 - https://doi.org/10.1021/acs.macromol.0c02821 SN - 0024-9297 SN - 1520-5835 VL - 54 IS - 6 SP - 2720 EP - 2728 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Enzenberg, Anne A1 - Laschewsky, Andre A1 - Boeffel, Christine A1 - Wischerhoff, Erik T1 - Influence of the Near Molecular Vicinity on the Temperature Regulated Fluorescence Response of Poly(N-vinylcaprolactam) JF - Polymers N2 - A series of new fluorescent dye bearing monomers, including glycomonomers, based on maleamide and maleic esteramide was synthesized. The dye monomers were incorporated by radical copolymerization into thermo-responsive poly(N‑vinyl-caprolactam) that displays a lower critical solution temperature (LCST) in aqueous solution. The effects of the local molecular environment on the polymers’ luminescence, in particular on the fluorescence intensity and the extent of solvatochromism, were investigated below as well as above the phase transition. By attaching substituents of varying size and polarity in the close vicinity of the fluorophore, and by varying the spacer groups connecting the dyes to the polymer backbone, we explored the underlying structure–property relationships, in order to establish rules for successful sensor designs, e.g., for molecular thermometers. Most importantly, spacer groups of sufficient length separating the fluorophore from the polymer backbone proved to be crucial for obtaining pronounced temperature regulated fluorescence responses. View Full-Text KW - thermo-responsive polymers KW - poly(N-vinylcaprolactam) KW - lower critical solution temperature KW - fluorescent dyemonomers KW - naphthalimide KW - solvatochromism KW - polymeric sensors KW - molecular thermometers Y1 - 2016 U6 - https://doi.org/10.3390/polym8040109 SN - 2073-4360 VL - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Garnier, Sebastien A1 - Laschewsky, Andre T1 - Non-ionic amphiphilic block copolymers by RAFT-polymerization and their self-organization JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents. KW - macrosurfactants KW - block copolymers KW - micelles KW - inverse micelles KW - sulfoxide Y1 - 2006 U6 - https://doi.org/10.1007/s00396-006-1484-9 SN - 0303-402X VL - 284 SP - 1243 EP - 1254 PB - Springer CY - Berlin ER - TY - JOUR A1 - Hechenbichler, Michelle A1 - Laschewsky, Andre A1 - Gradzielski, Michael T1 - Poly(N,N-bis(2-methoxyethyl)acrylamide), a thermoresponsive non-ionic polymer combining the amide and the ethyleneglycolether motifs JF - Colloid and polymer science N2 - Poly(N,N-bis(2-methoxyethyl)acrylamide) (PbMOEAm) featuring two classical chemical motifs from non-ionic water-soluble polymers, namely, the amide and ethyleneglycolether moieties, was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. This tertiary polyacrylamide is thermoresponsive exhibiting a lower critical solution temperature (LCST)-type phase transition. A series of homo- and block copolymers with varying molar masses but low dispersities and different end groups were prepared. Their thermoresponsive behavior in aqueous solution was analyzed via turbidimetry and dynamic light scattering (DLS). The cloud points (CP) increased with increasing molar masses, converging to 46 degrees C for 1 wt% solutions. This rise is attributed to the polymers' hydrophobic end groups incorporated via the RAFT agents. When a surfactant-like strongly hydrophobic end group was attached using a functional RAFT agent, CP was lowered to 42 degrees C, i.e., closer to human body temperature. Also, the effect of added salts, in particular, the role of the Hofmeister series, on the phase transition of PbMOEAm was investigated, exemplified for the kosmotropic fluoride, intermediate chloride, and chaotropic thiocyanate anions. A pronounced shift of the cloud point of about 10 degrees C to lower or higher temperatures was observed for 0.2 M fluoride and thiocyanate, respectively. When PbMOEAm was attached to a long hydrophilic block of poly(N,N-dimethylacrylamide) (PDMAm), the cloud points of these block copolymers were strongly shifted towards higher temperatures. While no phase transition was observed for PDMAm-b-pbMOEAm with short thermoresponsive blocks, block copolymers with about equally sized PbMOEAm and PDMAm blocks underwent the coil-to-globule transition around 60 degrees C. KW - polyacrylamide KW - water-soluble polymers KW - responsive systems KW - lower KW - critical solution temperature KW - polymer amphiphile Y1 - 2020 U6 - https://doi.org/10.1007/s00396-020-04701-9 SN - 0303-402X SN - 1435-1536 VL - 299 IS - 2 SP - 205 EP - 219 PB - Springer CY - Berlin; Heidelberg ER - TY - GEN A1 - Hechenbichler, Michelle A1 - Laschewsky, Andre A1 - Gradzielski, Michael T1 - Poly(N,N-bis(2-methoxyethyl)acrylamide), a thermoresponsive non-ionic polymer combining the amide and the ethyleneglycolether motifs T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Poly(N,N-bis(2-methoxyethyl)acrylamide) (PbMOEAm) featuring two classical chemical motifs from non-ionic water-soluble polymers, namely, the amide and ethyleneglycolether moieties, was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. This tertiary polyacrylamide is thermoresponsive exhibiting a lower critical solution temperature (LCST)-type phase transition. A series of homo- and block copolymers with varying molar masses but low dispersities and different end groups were prepared. Their thermoresponsive behavior in aqueous solution was analyzed via turbidimetry and dynamic light scattering (DLS). The cloud points (CP) increased with increasing molar masses, converging to 46 degrees C for 1 wt% solutions. This rise is attributed to the polymers' hydrophobic end groups incorporated via the RAFT agents. When a surfactant-like strongly hydrophobic end group was attached using a functional RAFT agent, CP was lowered to 42 degrees C, i.e., closer to human body temperature. Also, the effect of added salts, in particular, the role of the Hofmeister series, on the phase transition of PbMOEAm was investigated, exemplified for the kosmotropic fluoride, intermediate chloride, and chaotropic thiocyanate anions. A pronounced shift of the cloud point of about 10 degrees C to lower or higher temperatures was observed for 0.2 M fluoride and thiocyanate, respectively. When PbMOEAm was attached to a long hydrophilic block of poly(N,N-dimethylacrylamide) (PDMAm), the cloud points of these block copolymers were strongly shifted towards higher temperatures. While no phase transition was observed for PDMAm-b-pbMOEAm with short thermoresponsive blocks, block copolymers with about equally sized PbMOEAm and PDMAm blocks underwent the coil-to-globule transition around 60 degrees C. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1345 KW - polyacrylamide KW - water-soluble polymers KW - responsive systems KW - lower KW - critical solution temperature KW - polymer amphiphile Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-598378 SN - 0303-402X SN - 1435-1536 SN - 1866-8372 VL - 299 IS - 2 PB - Springer CY - Berlin; Heidelberg ER - TY - JOUR A1 - Herfurth, Christoph A1 - Laschewsky, Andre A1 - Noirez, Laurence A1 - von Lospichl, Benjamin A1 - Gradzielski, Michael T1 - Thermoresponsive (star) block copolymers from one-pot sequential RAFT polymerizations and their self-assembly in aqueous solution JF - Polymer : the international journal for the science and technology of polymers N2 - A series of hydrophobically end-capped linear triblock copolymers as well as of three-arm and four-arm star block copolymers was synthesized in a one-pot procedure from N,N-dimethylacrylamide (DMA) and N, N-diethylacrylamide (DEA). The sequential reversible addition-fragmentation chain transfer (RAFT) polymerization of these monomers via the R-approach using bi-, tri- and tetrafunctional chain transfer agents (CrAs) bearing hydrophobic dodecyl moieties proceeded in a well-controlled manner up to almost quantitative conversion. Polymers with molar masses up to 150 kDa, narrow molar mass distribution (PDI <= 1.3) and high end group functionality were obtained, which are thermoresponsive in aqueous solution showing a LCST (lower critical solution temperature) transition. The temperature-dependent associative behavior of the polymers was examined using turbidimetry, static and dynamic light scattering (SLS, DLS), and small angle neutron scattering (SANS) for structural analysis. At 25 degrees C, the polymers form weak transient networks, and rather small hydrophobic domains are already present for polymer concentrations of 5 wt%. However, when heating above the LCST transition (35-40 degrees C) of the PDEA blocks, the enhanced formation of hydrophobic domains is observed by means of light and neutron scattering. These domains have a size of about 12-15 nm and must be effectively physically cross-linked as they induce high viscosity for the more concentrated samples. SANS shows that these domains are ordered as evidenced by the appearance of a correlation peak. The copolymer architecture affects in particular the extent of ordering as the four-arm star block copolymer shows much more repulsive interactions compared to the analogous copolymers with a lower number of arms. (C) 2016 Elsevier Ltd. All rights reserved. KW - RAFT polymerization KW - Block copolymers KW - Thermosensitivity KW - LCST KW - SANS KW - Light scattering Y1 - 2016 U6 - https://doi.org/10.1016/j.polymer.2016.09.089 SN - 0032-3861 SN - 1873-2291 VL - 107 SP - 422 EP - 433 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hildebrand, Viet A1 - Heydenreich, Matthias A1 - Laschewsky, Andre A1 - Moeller, Heiko M. A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. A1 - Schanzenbach, Dirk A1 - Wischerhoff, Erik T1 - "Schizophrenic" self-assembly of dual thermoresponsive block copolymers bearing a zwitterionic and a non-ionic hydrophilic block JF - Polymer : the international journal for the science and technology of polymers N2 - Several series of presumed dual thermo-responsive diblock copolymers consisting of one non-ionic and one zwitterionic block were synthesized via consecutive reversible addition-fragmentation chain transfer (RAFT) polymerization. For all copolymers, poly(N-isopropylmethacrylamide) was chosen as non-ionic block that shows a coil-to-globule collapse transition of the lower critical solution temperature (LCST) type. In contrast, the chemical structure of zwitterionic blocks, which all belonged to the class of poly(sulfobetaine methacrylate)s, was varied broadly, in order to tune their coil-to-globule collapse transition of the upper critical solution temperature (UCST) type. All polymers were labeled with a solvatochromic fluorescent end-group. The dual thermo-responsive behavior and the resulting multifarious temperature-dependent self-assembly in aqueous solution were mapped by temperature resolved turbidimetry, H-1 NMR spectroscopy, dynamic light scattering (DLS), and fluorescence spectroscopy. Depending on the relative positions between the UCST-type and LCST-type transition temperatures, as well as on the width of the window in-between, all the four possible modes of stimulus induced micellization can be realized. This includes classical induced micellization due to a transition from a double hydrophilic, or respectively, from a double hydrophobic to an amphiphilic state, as well as "schizophrenic" behavior, where the core- and shell-forming blocks are inverted. The exchange of the roles of the hydrophilic and hydrophobic block in the amphiphilic states is possible through a homogeneous intermediate state or a heterogeneous one. (C) 2017 Elsevier Ltd. All rights reserved. KW - RAFT polymerization KW - Block copolymer KW - Sulfobetaine methacrylate KW - Responsive polymer KW - LCST KW - UCST KW - Schizophrenic self-assembly Y1 - 2017 U6 - https://doi.org/10.1016/j.polymer.2017.06.063 SN - 0032-3861 SN - 1873-2291 VL - 122 SP - 347 EP - 357 PB - Elsevier CY - Oxford ER -