TY - JOUR A1 - Abseher, Michael A1 - Musliu, Nysret A1 - Woltran, Stefan A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Shift Design with Answer Set Programming JF - Fundamenta informaticae N2 - Answer Set Programming (ASP) is a powerful declarative programming paradigm that has been successfully applied to many different domains. Recently, ASP has also proved successful for hard optimization problems like course timetabling and travel allotment. In this paper, we approach another important task, namely, the shift design problem, aiming at an alignment of a minimum number of shifts in order to meet required numbers of employees (which typically vary for different time periods) in such a way that over- and understaffing is minimized. We provide an ASP encoding of the shift design problem, which, to the best of our knowledge, has not been addressed by ASP yet. Our experimental results demonstrate that ASP is capable of improving the best known solutions to some benchmark problems. Other instances remain challenging and make the shift design problem an interesting benchmark for ASP-based optimization methods. Y1 - 2016 U6 - https://doi.org/10.3233/FI-2016-1396 SN - 0169-2968 SN - 1875-8681 VL - 147 SP - 1 EP - 25 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Janhunen, Tomi A1 - Schaub, Torsten H. T1 - What's a head without a body? Y1 - 2006 ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Linke, Thomas A1 - Neumann, Andre A1 - Schaub, Torsten H. T1 - The nomore++ approach to answer set solving Y1 - 2005 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angelinesc05c.pdf ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Linke, Thomas A1 - Neumann, Andre A1 - Schaub, Torsten H. T1 - The nomore++ approach to answer set solving Y1 - 2005 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angelinesc05c.pdf ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Approaching the core of unfounded sets Y1 - 2006 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angesc06a.pdf ER - TY - JOUR A1 - Bobda, Christophe A1 - Yonga, Franck A1 - Gebser, Martin A1 - Ishebabi, Harold A1 - Schaub, Torsten H. T1 - High-level synthesis of on-chip multiprocessor architectures based on answer set programming JF - Journal of Parallel and Distributed Computing N2 - We present a system-level synthesis approach for heterogeneous multi-processor on chip, based on Answer Set Programming(ASP). Starting with a high-level description of an application, its timing constraints and the physical constraints of the target device, our goal is to produce the optimal computing infrastructure made of heterogeneous processors, peripherals, memories and communication components. Optimization aims at maximizing speed, while minimizing chip area. Also, a scheduler must be produced that fulfills the real-time requirements of the application. Even though our approach will work for application specific integrated circuits, we have chosen FPGA as target device in this work because of their reconfiguration capabilities which makes it possible to explore several design alternatives. This paper addresses the bottleneck of problem representation size by providing a direct and compact ASP encoding for automatic synthesis that is semantically equivalent to previously established ILP and ASP models. We describe a use-case in which designers specify their applications in C/C++ from which optimum systems can be derived. We demonstrate the superiority of our approach toward existing heuristics and exact methods with synthesis results on a set of realistic case studies. (C) 2018 Elsevier Inc. All rights reserved. KW - System design KW - Architecture synthesis KW - Answer set programming KW - Multi-objective optimization KW - Technology mapping KW - Reconfigurable architecture Y1 - 2018 U6 - https://doi.org/10.1016/j.jpdc.2018.02.010 SN - 0743-7315 SN - 1096-0848 VL - 117 SP - 161 EP - 179 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Bomanson, Jori A1 - Janhunen, Tomi A1 - Schaub, Torsten H. A1 - Gebser, Martin A1 - Kaufmann, Benjamin T1 - Answer Set Programming Modulo Acyclicity JF - Fundamenta informaticae N2 - Acyclicity constraints are prevalent in knowledge representation and applications where acyclic data structures such as DAGs and trees play a role. Recently, such constraints have been considered in the satisfiability modulo theories (SMT) framework, and in this paper we carry out an analogous extension to the answer set programming (ASP) paradigm. The resulting formalism, ASP modulo acyclicity, offers a rich set of primitives to express constraints related to recursive structures. In the technical results of the paper, we relate the new generalization with standard ASP by showing (i) how acyclicity extensions translate into normal rules, (ii) how weight constraint programs can be instrumented by acyclicity extensions to capture stability in analogy to unfounded set checking, and (iii) how the gap between supported and stable models is effectively closed in the presence of such an extension. Moreover, we present an efficient implementation of acyclicity constraints by incorporating a respective propagator into the state-of-the-art ASP solver CLASP. The implementation provides a unique combination of traditional unfounded set checking with acyclicity propagation. In the experimental part, we evaluate the interplay of these orthogonal checks by equipping logic programs with supplementary acyclicity constraints. The performance results show that native support for acyclicity constraints is a worthwhile addition, furnishing a complementary modeling construct in ASP itself as well as effective means for translation-based ASP solving. Y1 - 2016 U6 - https://doi.org/10.3233/FI-2016-1398 SN - 0169-2968 SN - 1875-8681 VL - 147 SP - 63 EP - 91 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Brain, Martin A1 - Gebser, Martin A1 - Pührer, Jörg A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - "That is illogical, Captain!" : the debugging support tool spock for answer-set programs ; system description Y1 - 2007 ER - TY - JOUR A1 - Brain, Martin A1 - Gebser, Martin A1 - Pührer, Jörg A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Debugging ASP programs by means of ASP Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Dimopoulos, Yannis A1 - Gebser, Martin A1 - Lühne, Patrick A1 - Romero Davila, Javier A1 - Schaub, Torsten H. T1 - plasp 3 BT - Towards Effective ASP Planning JF - Theory and practice of logic programming N2 - We describe the new version of the Planning Domain Definition Language (PDDL)-to-Answer Set Programming (ASP) translator plasp. First, it widens the range of accepted PDDL features. Second, it contains novel planning encodings, some inspired by Satisfiability Testing (SAT) planning and others exploiting ASP features such as well-foundedness. All of them are designed for handling multivalued fluents in order to capture both PDDL as well as SAS planning formats. Third, enabled by multishot ASP solving, it offers advanced planning algorithms also borrowed from SAT planning. As a result, plasp provides us with an ASP-based framework for studying a variety of planning techniques in a uniform setting. Finally, we demonstrate in an empirical analysis that these techniques have a significant impact on the performance of ASP planning. KW - knowledge representation and nonmonotonic reasoning KW - technical notes and rapid communications KW - answer set programming KW - automated planning KW - action and change Y1 - 2019 U6 - https://doi.org/10.1017/S1471068418000583 SN - 1471-0684 SN - 1475-3081 VL - 19 IS - 3 SP - 477 EP - 504 PB - Cambridge Univ. Press CY - New York ER -