TY - JOUR A1 - Aksu, Yilmaz A1 - Frasca, Stefano A1 - Wollenberger, Ursula A1 - Driess, Matthias A1 - Thomas, Arne T1 - A molecular precursor approach to tunable porous tin-rich indium tin oxide with durable high electrical conductivity for bioelectronic devices JF - Chemistry of materials : a publication of the American Chemical Society N2 - The preparation of porous, i.e., high surface area electrodes from transparent conducting oxides, is a valuable goal in materials chemistry as such electrodes can enable further development of optoelectronic, electrocatalytic, or bioelectronic devices. In this work the first tin-rich mesoporous indium tin oxide is prepared using the molecular heterobimetallic single-source precursor, indium tin tris-tert-butoxide, together with an appropriate structure-directing template, yielding materials with high surface areas and tailorable pore size. The resulting mesoporous tin-rich ITO films show a high and durable electrical conductivity and transparency, making them interesting materials for hosting electroactive biomolecules such as proteins. In fact, its unique performance in bioelectronic applications has been demonstrated by immobilization of high amounts of cytochrome c into the mesoporous film which undergo redox processes directly with the conductive electrode material. KW - indium tin oxide ITO KW - electrode KW - bioelectrochemistry KW - device KW - cytochrome c Y1 - 2011 U6 - https://doi.org/10.1021/cm103087p SN - 0897-4756 VL - 23 IS - 7 SP - 1798 EP - 1804 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Guiet, Amandine A1 - Goebel, Caren A1 - Klingan, Katharina A1 - Lublow, Michael A1 - Reier, Tobias A1 - Vainio, Ulla A1 - Kraehnert, Ralph A1 - Schlaad, Helmut A1 - Strasser, Peter A1 - Zaharieva, Ivelina A1 - Dau, Holger A1 - Driess, Matthias A1 - Polte, Joerg A1 - Fischer, Anna T1 - Hydrophobic Nanoreactor Soft-Templating: A Supramolecular Approach to Yolk@Shell Materials JF - Advanced functional materials N2 - Due to their unique morphology-related properties, yolk@shell materials are promising materials for catalysis, drug delivery, energy conversion, and storage. Despite their proven potential, large-scale applications are however limited due to demanding synthesis protocols. Overcoming these limitations, a simple soft-templated approach for the one-pot synthesis of yolk@shell nanocomposites and in particular of multicore metal nanoparticle@metal oxide nanostructures (M-NP@MOx) is introduced. The approach here, as demonstrated for Au-NP@ITOTR (ITOTR standing for tin-rich ITO), relies on polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) inverse micelles as two compartment nanoreactor templates. While the hydrophilic P4VP core incorporates the hydrophilic metal precursor, the hydrophobic PS corona takes up the hydrophobic metal oxide precursor. As a result, interfacial reactions between the precursors can take place, leading to the formation of yolk@shell structures in solution. Once calcined these micelles yield Au-NP@ITOTR nanostructures, composed of multiple 6 nm sized Au NPs strongly anchored onto the inner surface of porous 35 nm sized ITOTR hollow spheres. Although of multicore nature, only limited sintering of the metal nanoparticles is observed at high temperatures (700 degrees C). In addition, the as-synthesized yolk@shell structures exhibit high and stable activity toward CO electrooxidation, thus demonstrating the applicability of our approach for the design of functional yolk@shell nanocatalysts. KW - inverse micelles KW - nanoreactor KW - polystyrene-block-poly(4-vinylpyridine) KW - soft-templating KW - tin-rich ITO KW - yolk@shell materials Y1 - 2015 U6 - https://doi.org/10.1002/adfm.201502388 SN - 1616-301X SN - 1616-3028 VL - 25 IS - 39 SP - 6228 EP - 6240 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Guiet, Amandine A1 - Unmüssig, Tobias A1 - Göbel, Caren A1 - Vainio, Ulla A1 - Wollgarten, Markus A1 - Driess, Matthias A1 - Schlaad, Helmut A1 - Polte, Jörg A1 - Fischer, Anna T1 - Yolk@Shell Nanoarchitectures with Bimetallic Nanocores - Synthesis and Electrocatalytic Applications JF - Earth & planetary science letters KW - AgAu alloy nanoparticles KW - tin-rich ITO KW - yolk@shell materials KW - nanoreactor KW - soft-templating KW - inverse micelles KW - polystyrene-block-poly(4-vinylpyridine) Y1 - 2016 U6 - https://doi.org/10.1021/acsami.6b06595 SN - 1944-8244 VL - 8 SP - 28019 EP - 28029 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Öner, Ibrahim Halil A1 - Querebillo, Christine Joy A1 - David, Christin A1 - Gernert, Ulrich A1 - Walter, Carsten A1 - Driess, Matthias A1 - Leimkühler, Silke A1 - Ly, Khoa Hoang A1 - Weidinger, Inez M. T1 - High electromagnetic field enhancement of TiO2 nanotube electrodes JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - We present the fabrication of TiO2 nanotube electrodes with high biocompatibility and extraordinary spectroscopic properties. Intense surface-enhanced resonance Raman signals of the heme unit of the redox enzyme Cytochromeb(5) were observed upon covalent immobilization of the protein matrix on the TiO2 surface, revealing overall preserved structural integrity and redox behavior. The enhancement factor could be rationally controlled by varying the electrode annealing temperature, reaching a record maximum value of over 70 at 475 degrees C. For the first time, such high values are reported for non-directly surface-interacting probes, for which the involvement of charge-transfer processes in signal amplification can be excluded. The origin of the surface enhancement is exclusively attributed to enhanced localized electric fields resulting from the specific optical properties of the nanotubular geometry of the electrode. KW - electromagnetic field enhancement KW - photonic crystals KW - spectro-electrochemistry KW - surface-enhanced Raman spectroscopy KW - TiO2 nanotubes Y1 - 2018 U6 - https://doi.org/10.1002/anie.201802597 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 24 SP - 7225 EP - 7229 PB - Wiley-VCH CY - Weinheim ER -