TY - JOUR A1 - Ahmed, Muhammad N. A1 - Reyna-Gonzalez, Emmanuel A1 - Schmid, Bianca A1 - Wiebach, Vincent A1 - Suessmuth, Roderich D. A1 - Dittmann, Elke A1 - Fewer, David P. T1 - Phylogenomic Analysis of the Microviridin Biosynthetic Pathway Coupled with Targeted Chemo-Enzymatic Synthesis Yields Potent Protease Inhibitors JF - ACS chemical biology N2 - Natural products and their semisynthetic derivatives are an important source of drugs for the pharmaceutical industry. Bacteria are prolific producers of natural products and encode a vast diversity of natural product biosynthetic gene clusters. However, much of this diversity is inaccessible to natural product discovery. Here, we use a combination of phylogenomic analysis of the microviridin biosynthetic pathway and chemo-enzymatic synthesis of bioinformatically predicted microviridins to yield new protease inhibitors. Phylogenomic analysis demonstrated that microviridin biosynthetic gene clusters occur across the bacterial domain and encode three distinct subtypes of precursor peptides. Our analysis shed light on the evolution of microviridin biosynthesis and enabled prioritization of their chemo-enzymatic production. Targeted one-pot synthesis of four microviridins encoded by the cyanobacterium Cyanothece sp. PCC 7822 identified a set of novel and potent serine protease inhibitors, the most active of which had an IC50 value of 21.5 nM. This study advances the genome mining techniques available for natural product discovery and obviates the need to culture bacteria. Y1 - 2017 U6 - https://doi.org/10.1021/acschembio.7b00124 SN - 1554-8929 SN - 1554-8937 VL - 12 SP - 1538 EP - 1546 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Barchewitz, Tino A1 - Guljamow, Arthur A1 - Meißner, Sven A1 - Timm, Stefan A1 - Henneberg, Manja A1 - Baumann, Otto A1 - Hagemann, Martin A1 - Dittmann, Elke T1 - Non-canonical localization of RubisCO under high-light conditions in the toxic cyanobacterium Microcystis aeruginosa PCC7806 JF - Environmental microbiology N2 - The frequent production of the hepatotoxin microcystin (MC) and its impact on the lifestyle of bloom-forming cyanobacteria are poorly understood. Here, we report that MC interferes with the assembly and the subcellular localization of RubisCO, in Microcystis aeruginosa PCC7806. Immunofluorescence, electron microscopic and cellular fractionation studies revealed a pronounced heterogeneity in the subcellular localization of RubisCO. At high cell density, RubisCO particles are largely separate from carboxysomes in M. aeruginosa and relocate to the cytoplasmic membrane under high-light conditions. We hypothesize that the binding of MC to RubisCO promotes its membrane association and enables an extreme versatility of the enzyme. Steady-state levels of the RubisCO CO2 fixation product 3-phosphoglycerate are significantly higher in the MC-producing wild type. We also detected noticeable amounts of the RubisCO oxygenase reaction product secreted into the medium that may support the mutual interaction of M. aeruginosa with its heterotrophic microbial community. Y1 - 2019 U6 - https://doi.org/10.1111/1462-2920.14837 SN - 1462-2912 SN - 1462-2920 VL - 21 IS - 12 SP - 4836 EP - 4851 PB - Wiley CY - Hoboken ER - TY - GEN A1 - des Aulnois, Maxime Georges A1 - Réveillon, Damien A1 - Robert, Elise A1 - Caruana, Amandine A1 - Briand, Enora A1 - Guljamow, Arthur A1 - Dittmann, Elke A1 - Amzil, Zouher A1 - Bormans, Myriam T1 - Salt shock responses of Microcystis revealed through physiological, transcript, and metabolomic analyses T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The transfer of Microcystis aeruginosa from freshwater to estuaries has been described worldwide and salinity is reported as the main factor controlling the expansion of M. aeruginosa to coastal environments. Analyzing the expression levels of targeted genes and employing both targeted and non-targeted metabolomic approaches, this study investigated the effect of a sudden salt increase on the physiological and metabolic responses of two toxic M. aeruginosa strains separately isolated from fresh and brackish waters, respectively, PCC 7820 and 7806. Supported by differences in gene expressions and metabolic profiles, salt tolerance was found to be strain specific. An increase in salinity decreased the growth of M. aeruginosa with a lesser impact on the brackish strain. The production of intracellular microcystin variants in response to salt stress correlated well to the growth rate for both strains. Furthermore, the release of microcystins into the surrounding medium only occurred at the highest salinity treatment when cell lysis occurred. This study suggests that the physiological responses of M. aeruginosa involve the accumulation of common metabolites but that the intraspecific salt tolerance is based on the accumulation of specific metabolites. While one of these was determined to be sucrose, many others remain to be identified. Taken together, these results provide evidence that M. aeruginosa is relatively salt tolerant in the mesohaline zone and microcystin (MC) release only occurs when the capacity of the cells to deal with salt increase is exceeded. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1130 KW - Microcystis aeruginosa KW - microcystin KW - salt stress KW - metabolomic KW - transcript Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472405 SN - 1866-8372 IS - 1130 ER - TY - JOUR A1 - des Aulnois, Maxime Georges A1 - Réveillon, Damien A1 - Robert, Elise A1 - Caruana, Amandine A1 - Briand, Enora A1 - Guljamow, Arthur A1 - Dittmann, Elke A1 - Amzil, Zouher A1 - Bormans, Myriam T1 - Salt shock responses of Microcystis revealed through physiological, transcript, and metabolomic analyses JF - Toxins N2 - The transfer of Microcystis aeruginosa from freshwater to estuaries has been described worldwide and salinity is reported as the main factor controlling the expansion of M. aeruginosa to coastal environments. Analyzing the expression levels of targeted genes and employing both targeted and non-targeted metabolomic approaches, this study investigated the effect of a sudden salt increase on the physiological and metabolic responses of two toxic M. aeruginosa strains separately isolated from fresh and brackish waters, respectively, PCC 7820 and 7806. Supported by differences in gene expressions and metabolic profiles, salt tolerance was found to be strain specific. An increase in salinity decreased the growth of M. aeruginosa with a lesser impact on the brackish strain. The production of intracellular microcystin variants in response to salt stress correlated well to the growth rate for both strains. Furthermore, the release of microcystins into the surrounding medium only occurred at the highest salinity treatment when cell lysis occurred. This study suggests that the physiological responses of M. aeruginosa involve the accumulation of common metabolites but that the intraspecific salt tolerance is based on the accumulation of specific metabolites. While one of these was determined to be sucrose, many others remain to be identified. Taken together, these results provide evidence that M. aeruginosa is relatively salt tolerant in the mesohaline zone and microcystin (MC) release only occurs when the capacity of the cells to deal with salt increase is exceeded. KW - Microcystis aeruginosa KW - microcystin KW - salt stress KW - metabolomic KW - transcript Y1 - 2020 U6 - https://doi.org/10.3390/toxins12030192 SN - 2072-6651 VL - 12 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Guljamow, Arthur A1 - Barchewitz, Tino A1 - Große, Rebecca A1 - Timm, Stefan A1 - Hagemann, Martin A1 - Dittmann, Elke T1 - Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosa PCC 7806 JF - Microorganisms : open access journal N2 - The ubiquitous freshwater cyanobacterium Microcystis is remarkably successful, showing a high tolerance against fluctuations in environmental conditions. It frequently forms dense blooms which can accumulate significant amounts of the hepatotoxin microcystin, which plays an extracellular role as an infochemical but also acts intracellularly by interacting with proteins of the carbon metabolism, notably with the CO2 fixing enzyme RubisCO. Here we demonstrate a direct link between external microcystin and its intracellular targets. Monitoring liquid cultures of Microcystis in a diel experiment revealed fluctuations in the extracellular microcystin content that correlate with an increase in the binding of microcystin to intracellular proteins. Concomitantly, reversible relocation of RubisCO from the cytoplasm to the cell’s periphery was observed. These variations in RubisCO localization were especially pronounced with cultures grown at higher cell densities. We replicated these effects by adding microcystin externally to cultures grown under continuous light. Thus, we propose that microcystin may be part of a fast response to conditions of high light and low carbon that contribute to the metabolic flexibility and the success of Microcystis in the field. KW - cyanobacterial bloom KW - Microcystis KW - microcystin KW - RubisCO KW - extracellular signaling Y1 - 2021 U6 - https://doi.org/10.3390/microorganisms9061265 SN - 2076-2607 VL - 9 IS - 6 PB - MDPI CY - Basel ER - TY - GEN A1 - Guljamow, Arthur A1 - Barchewitz, Tino A1 - Große, Rebecca A1 - Timm, Stefan A1 - Hagemann, Martin A1 - Dittmann, Elke T1 - Diel Variations of Extracellular Microcystin Influence the Subcellular Dynamics of RubisCO in Microcystis aeruginosa PCC 7806 T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The ubiquitous freshwater cyanobacterium Microcystis is remarkably successful, showing a high tolerance against fluctuations in environmental conditions. It frequently forms dense blooms which can accumulate significant amounts of the hepatotoxin microcystin, which plays an extracellular role as an infochemical but also acts intracellularly by interacting with proteins of the carbon metabolism, notably with the CO2 fixing enzyme RubisCO. Here we demonstrate a direct link between external microcystin and its intracellular targets. Monitoring liquid cultures of Microcystis in a diel experiment revealed fluctuations in the extracellular microcystin content that correlate with an increase in the binding of microcystin to intracellular proteins. Concomitantly, reversible relocation of RubisCO from the cytoplasm to the cell’s periphery was observed. These variations in RubisCO localization were especially pronounced with cultures grown at higher cell densities. We replicated these effects by adding microcystin externally to cultures grown under continuous light. Thus, we propose that microcystin may be part of a fast response to conditions of high light and low carbon that contribute to the metabolic flexibility and the success of Microcystis in the field. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1154 KW - cyanobacterial bloom KW - Microcystis KW - microcystin KW - RubisCO KW - extracellular signaling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-521287 SN - 1866-8372 IS - 1154 ER - TY - JOUR A1 - Hackenberg, Claudia A1 - Hakanpaeae, Johanna A1 - Cai, Fei A1 - Antonyuk, Svetlana A1 - Eigner, Caroline A1 - Meissner, Sven A1 - Laitaoja, Mikko A1 - Janis, Janne A1 - Kerfeld, Cheryl A. A1 - Dittmann, Elke A1 - Lamzin, Victor S. T1 - Structural and functional insights into the unique CBS-CP12 fusion protein family in cyanobacteria JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Cyanobacteria are important photosynthetic organisms inhabiting a range of dynamic environments. This phylum is distinctive among photosynthetic organisms in containing genes encoding uncharacterized cystathionine beta-synthase (CBS)-chloroplast protein (CP12) fusion proteins. These consist of two domains, each recognized as stand-alone photosynthetic regulators with different functions described in cyanobacteria (CP12) and plants (CP12 and CBSX). Here we show that CBS-CP12 fusion proteins are encoded in distinct gene neighborhoods, several unrelated to photosynthesis. Most frequently, CBS-CP12 genes are in a gene cluster with thioredoxin A (TrxA), which is prevalent in bloom-forming, marine symbiotic, and benthic mat cyanobacteria. Focusing on a CBS-CP12 from Microcystis aeruginosa PCC 7806 encoded in a gene cluster with TrxA, we reveal that the domain fusion led to the formation of a hexameric protein. We show that the CP12 domain is essential for hexamerization and contains an ordered, previously structurally uncharacterized N-terminal region. We provide evidence that CBS-CP12, while combining properties of both regulatory domains, behaves different from CP12 and plant CBSX. It does not form a ternary complex with phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase. Instead, CBS-CP12 decreases the activity of PRK in an AMP-dependent manner. We propose that the novel domain architecture and oligomeric state of CBS-CP12 expand its regulatory function beyond those of CP12 in cyanobacteria. KW - crystal structure KW - hexamer KW - redox KW - Microcystis aeruginosa Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1806668115 SN - 0027-8424 VL - 115 IS - 27 SP - 7141 EP - 7146 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Hu, Chenlin A1 - Ludsin, Stuart A. A1 - Martin, Jay F. A1 - Dittmann, Elke A1 - Lee, Jiyoung T1 - Mycosporine-like amino acids (MAAs)-producing Microcystis in Lake Erie BT - Development of a qPCR assay and insight into its ecology JF - Harmful algae N2 - Mycosporine-like amino acids (MAAs) are UV-absorbing metabolites found in cyanobacteria. While their protective role from UV in Microcystis has been studied in a laboratory setting, a full understanding of the ecology of MAA-producing versus non-MAA-producing Microcystis in natural environments is lacking. This study presents a new tool for quantifying MAA-producing Microcystis and applies it to obtain insight into the dynamics of MAA-producing and non-MAA-producing Microcystis in Lake Erie. This study first developed a sensitive, specific TaqMan real-time PCR assay that targets MAA synthetase gene C (mysC) of Microcystis (quantitative range: 1.7 × 101 to 1.7 × 107 copies/assay). Using this assay, Microcystis was quantified with a MAA-producing genotype (mysC+) in water samples (n = 96) collected during March-November 2013 from 21 Lake Erie sites (undetectable − 8.4 × 106 copies/ml). The mysC+ genotype comprised 0.3–37.8% of the Microcystis population in Lake Erie during the study period. The proportion of the mysC+ genotype during high solar UV irradiation periods (mean = 18.8%) was significantly higher than that during lower UV periods (mean = 9.7%). Among the MAAs, shinorine (major) and porphyra (minor) were detected with HPLC-PDA-MS/MS from the Microcystis isolates and water samples. However, no significant difference in the MAA concentrations existed between higher and lower solar UV periods when the MAA concentrations were normalized with Microcystis mysC abundance. Collectively, this study’s findings suggest that the MAA-producing Microcystis are present in Lake Erie, and they may be ecologically advantageous under high UV conditions, but not to the point that they exclusively predominate over the non-MAA-producers. KW - Shinorine KW - Porphyra KW - UV irradiation KW - Sunscreen KW - Eutrophication KW - Harmful algal bloom Y1 - 2018 U6 - https://doi.org/10.1016/j.hal.2018.05.010 SN - 1568-9883 SN - 1878-1470 VL - 77 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Krumbholz, Julia A1 - Ishida, Keishi A1 - Baunach, Martin A1 - Teikari, Jonna A1 - Rose, Magdalena M. A1 - Sasso, Severin A1 - Hertweck, Christian A1 - Dittmann, Elke T1 - Deciphering chemical mediators regulating specialized metabolism in a symbiotic cyanobacterium JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker. International edition N2 - Genomes of cyanobacteria feature a variety of cryptic biosynthetic pathways for complex natural products, but the peculiarities limiting the discovery and exploitation of the metabolic dark matter are not well understood. Here we describe the discovery of two cell density-dependent chemical mediators, nostoclide and nostovalerolactone, in the symbiotic model strain Nostoc punctiforme, and demonstrate their pronounced impact on the regulation of specialized metabolism. Through transcriptional, bioinformatic and labeling studies we assigned two adjacent biosynthetic gene clusters to the biosynthesis of the two polyketide mediators. Our findings provide insight into the orchestration of specialized metabolite production and give lessons for the genomic mining and high-titer production of cyanobacterial bioactive compounds. KW - Biosynthesis KW - Cyanobacteria KW - Genomic Mining KW - Quorum Sensing KW - Specialized KW - Metabolism Y1 - 2022 U6 - https://doi.org/10.1002/anie.202204545 SN - 1433-7851 SN - 1521-3773 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Köker, Latife A1 - Akçaalan, Reyhan A1 - Dittmann, Elke A1 - Albay, Meriç T1 - Depth profiles of protein-bound microcystin in Küçükçekmece Lagoon JF - Toxicon : an international journal devoted to the exchange of knowledge on the poisons derived from the tissues of plants and animals ; official journal of the International Society on Toxinology N2 - Microcystis is the most commonly found toxic cyanobacterial genus around the world and has a negative impact on the ecosystem. As a predominant producer of the potent hepatotoxin microcystin (MC), the genus causes outbreaks in freshwaters worldwide. Standard analytical methods that are used for the detection of microcystin variants can only measure the free form of microcystin in cells. Since microcystin was found as free and proteinbound forms in the cells, a significant proportion of microcystin is underestimated with analytical methods. The aim of the study was to measure protein-bound microcystins and determine the environmental factors that affect the binding of microcystin to proteins. Samples were taken at depths of surface, 1 m, 5 m, 10 m, 15 m, and 18 m in Kucukcekmece Lagoon to analyze depth profiles of two different microcystin forms from June to September 2012 at regular monthly intervals. Our findings suggest that the most important parameter affecting proteinbound microcystin at surface water is high light. Due to favorable environmental conditions such as temperature, light, and physicochemical parameters, the higher microcystin contents, both free and protein-bound MCs, were found in summer periods. KW - Microcystis KW - Microcystin KW - Protein-bound microcystin KW - Mcy gene KW - Kucukcekmece Lagoon Y1 - 2021 U6 - https://doi.org/10.1016/j.toxicon.2021.05.005 SN - 0041-0101 SN - 1879-3150 VL - 198 SP - 156 EP - 163 PB - Elsevier CY - Oxford ER -