TY - GEN A1 - Finch, Nicolle L. A1 - Braker, I. P. A1 - Reindl, Nicole A1 - Barstow, Martin A. A1 - Casewell, Sarah L. A1 - Burleigh, M. A1 - Kupfer, Thomas A1 - Kilkenny, D. A1 - Geier, Stephan A1 - Schaffenroth, Veronika A1 - Bertolami Miller, Marcelo Miguel A1 - Taubenberger, Stefan A1 - Freudenthal, Joseph T1 - Spectral Analysis of Binary Pre-white Dwarf Systems T2 - Radiative signatures from the cosmos N2 - Short period double degenerate white dwarf (WD) binaries with periods of less than similar to 1 day are considered to be one of the likely progenitors of type Ia supernovae. These binaries have undergone a period of common envelope evolution. If the core ignites helium before the envelope is ejected, then a hot subdwarf remains prior to contracting into a WD. Here we present a comparison of two very rare systems that contain two hot subdwarfs in short period orbits. We provide a quantitative spectroscopic analysis of the systems using synthetic spectra from state-of-the-art non-LTE models to constrain the atmospheric parameters of the stars. We also use these models to determine the radial velocities, and thus calculate dynamical masses for the stars in each system. Y1 - 2019 SN - 978-1-58381-925-8 SN - 1050-3390 VL - 519 SP - 231 EP - 238 PB - Astronomical soc pacific CY - San Fransisco ER - TY - JOUR A1 - Löbling, Lisa A1 - Rauch, Thomas A1 - Bertolami Miller, Marcelo Miguel A1 - Todt, Helge Tobias A1 - Friederich, F. A1 - Ziegler, M. A1 - Werner, Klaus A1 - Kruk, J. W. T1 - Spectral analysis of the hybrid PG 1159-type central stars of the planetary nebulae Abell 43 and NGC7094 JF - Monthly notices of the Royal Astronomical Society N2 - Stellar post asymptotic giant branch (post-AGB) evolution can be completely altered by a final thermal pulse (FTP) which may occur when the star is still leaving the AGB (AFTP), at the departure from the AGB at still constant luminosity (late TP, LTP) or after the entry to the white-dwarf cooling sequence (very late TP, VLTP). Then convection mixes the Herich material with the H-rich envelope. According to stellar evolution models the result is a star with a surface composition of H approximate to 20 per cent by mass (AFTP), approximate to 1 per cent (LTP), or (almost) no H (VLTP). Since FTP stars exhibit intershell material at their surface, spectral analyses establish constraints for AGB nucleosynthesis and stellar evolution. We performed a spectral analysis of the so-called hybrid PG 1159-type central stars (CS) of the planetary nebulae Abell 43 and NGC7094 by means of non-local thermodynamical equilibrium models. We confirm the previously determined effective temperatures of T-eff = 115 000 +/- 5 000K and determine surface gravities of log (g /(cm s(-2))) = 5.6 +/- 0.1 for both. From a comparison with AFTP evolutionary tracks, we derive stellar masses of 0.57(-0.04)(+0.07)M(circle dot) and determine the abundances of H, He, and metals up to Xe. Both CS are likely AFTP stars with a surface H mass fraction of 0.25 +/- 0.03 and 0.15 +/- 0.03, respectively, and an Fe deficiency indicating subsolar initial metallicities. The light metals show typical PG 1159-type abundances and the elemental composition is in good agreement with predictions from AFTP evolutionary models. However, the expansion ages do not agree with evolution time-scales expected from the AFTP scenario and alternatives should be explored. KW - stars: abundances KW - stars: AGB and post-AGB KW - stars: atmospheres KW - stars: evolution KW - stars: individual: WD1751+106 KW - stars: individual: WD2134+125 Y1 - 2019 U6 - https://doi.org/10.1093/mnras/stz1994 SN - 0035-8711 SN - 1365-2966 VL - 489 IS - 1 SP - 1054 EP - 1071 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Reindl, Nicole A1 - Finch, Nicolle L. A1 - Schaffenroth, Veronika A1 - Barstow, Martin A. A1 - Casewell, Sarah L. A1 - Geier, Stephan A1 - Bertolami Miller, Marcelo Miguel A1 - Taubenberger, Stefan T1 - Revealing the true nature of Hen 2-428 JF - Galaxies N2 - The nucleus of Hen 2-428 is a short orbital period (4.2 h) spectroscopic binary, whose status as potential supernovae type Ia progenitor has raised some controversy in the literature. We present preliminary results of a thorough analysis of this interesting system, which combines quantitative non-local thermodynamic (non-LTE) equilibrium spectral modelling, radial velocity analysis, multi-band light curve fitting, and state-of-the art stellar evolutionary calculations. Importantly, we find that the dynamical system mass that is derived by using all available He II lines does not exceed the Chandrasekhar mass limit. Furthermore, the individual masses of the two central stars are too small to lead to an SN Ia in case of a dynamical explosion during the merger process. KW - binaries: spectroscopic KW - stars: atmospheres KW - stars: abundances KW - supernovae Y1 - 2018 U6 - https://doi.org/10.3390/galaxies6030088 SN - 2075-4434 VL - 6 IS - 3 ER - TY - GEN A1 - Reindl, Nicole A1 - Finch, Nicolle L. A1 - Schaffenroth, Veronika A1 - Barstow, Martin A. A1 - Casewell, Sarah L. A1 - Geier, Stephan A1 - Bertolami Miller, Marcelo Miguel A1 - Taubenberger, Stefan T1 - Revealing the true nature of Hen2-428 T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The nucleus of Hen 2-428 is a short orbital period (4.2 h) spectroscopic binary, whose status as potential supernovae type Ia progenitor has raised some controversy in the literature. We present preliminary results of a thorough analysis of this interesting system, which combines quantitative non-local thermodynamic (non-LTE) equilibrium spectral modelling, radial velocity analysis, multi-band light curve fitting, and state-of-the art stellar evolutionary calculations. Importantly, we find that the dynamical system mass that is derived by using all available He II lines does not exceed the Chandrasekhar mass limit. Furthermore, the individual masses of the two central stars are too small to lead to an SN Ia in case of a dynamical explosion during the merger process. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1129 KW - binaries: spectroscopic KW - stars: atmospheres KW - stars: abundances KW - Supernovae Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459703 SN - 1866-8372 IS - 1129 ER -