TY - JOUR A1 - Beisner, Beatrix E. A1 - Grossart, Hans-Peter A1 - Gasol, Josep M. T1 - A guide to methods for estimating phago-mixotrophy in nanophytoplankton JF - Journal of plankton research N2 - Growing attention to phytoplankton mixotrophy as a trophic strategy has led to significant revisions of traditional pelagic food web models and ecosystem functioning. Although some empirical estimates of mixotrophy do exist, a much broader set of in situ measurements are required to (i) identify which organisms are acting as mixotrophs in real time and to (ii) assess the contribution of their heterotrophy to biogeochemical cycling. Estimates are needed through time and across space to evaluate which environmental conditions or habitats favour mixotrophy: conditions still largely unknown. We review methodologies currently available to plankton ecologists to undertake estimates of plankton mixotrophy, in particular nanophytoplankton phago-mixotrophy. Methods are based largely on fluorescent or isotopic tracers, but also take advantage of genomics to identify phylotypes and function. We also suggest novel methods on the cusp of use for phago-mixotrophy assessment, including single-cell measurements improving our capacity to estimate mixotrophic activity and rates in wild plankton communities down to the single-cell level. Future methods will benefit from advances in nanotechnology, micromanipulation and microscopy combined with stable isotope and genomic methodologies. Improved estimates of mixotrophy will enable more reliable models to predict changes in food web structure and biogeochemical flows in a rapidly changing world. KW - flow cytometry KW - phagotrophy KW - phytoplankton KW - methods KW - fluorescence KW - microscopy KW - FISH KW - isotopic methods KW - phylotypes KW - carbon flows KW - gene sequencing Y1 - 2019 U6 - https://doi.org/10.1093/plankt/fbz008 SN - 0142-7873 SN - 1464-3774 VL - 41 IS - 2 SP - 77 EP - 89 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Guislain, Alexis A1 - Beisner, Beatrix E. A1 - Köhler, Jan T1 - Variation in species light acquisition traits under fluctuating light regimes BT - implications for non-equilibrium coexistence JF - Oikos N2 - Resource distribution heterogeneity offers niche opportunities for species with different functional traits to develop and potentially coexist. Available light (photosynthetically active radiation or PAR) for suspended algae (phytoplankton) may fluctuate greatly over time and space. Species-specific light acquisition traits capture important aspects of the ecophysiology of phytoplankton and characterize species growth at either limiting or saturating daily PAR supply. Efforts have been made to explain phytoplankton coexistence using species-specific light acquisition traits under constant light conditions, but not under fluctuating light regimes that should facilitate non-equilibrium coexistence. In the well-mixed, hypertrophic Lake TaiHu (China), we incubated the phytoplankton community in bottles placed either at fixed depths or moved vertically through the water column to mimic vertical mixing. Incubations at constant depths received only the diurnal changes in light, while the moving bottles received rapidly fluctuating light. Species-specific light acquisition traits of dominant cyanobacteria (Anabaena flos-aquae, Microcystis spp.) and diatom (Aulacoseira granulata, Cyclotella pseudostelligera) species were characterized from their growth-light relationships that could explain relative biomasses along the daily PAR gradient under both constant and fluctuating light. Our study demonstrates the importance of interspecific differences in affinities to limiting and saturating light for the coexistence of phytoplankton species in spatially heterogeneous light conditions. Furthermore, we observed strong intraspecific differences in light acquisition traits between incubation under constant and fluctuating light - leading to the reversal of light utilization strategies of species. This increased the niche space for acclimated species, precluding competitive exclusion. These observations could enhance our understanding of the mechanisms behind the Paradox of the Plankton. KW - niche partitioning KW - phytoplankton photoacclimation Y1 - 2018 U6 - https://doi.org/10.1111/oik.05297 SN - 0030-1299 SN - 1600-0706 VL - 128 IS - 5 SP - 716 EP - 728 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Leach, Taylor H. A1 - Beisner, Beatrix E. A1 - Carey, Cayelan C. A1 - Pernica, Patricia A1 - Rose, Kevin C. A1 - Huot, Yannick A1 - Brentrup, Jennifer A. A1 - Domaizon, Isabelle A1 - Grossart, Hans-Peter A1 - Ibelings, Bastiaan W. A1 - Jacquet, Stephan A1 - Kelly, Patrick T. A1 - Rusak, James A. A1 - Stockwell, Jason D. A1 - Straile, Dietmar A1 - Verburg, Piet T1 - Patterns and drivers of deep chlorophyll maxima structure in 100 lakes BT - the relative importance of light and thermal stratification JF - Limnology and oceanography N2 - The vertical distribution of chlorophyll in stratified lakes and reservoirs frequently exhibits a maximum peak deep in the water column, referred to as the deep chlorophyll maximum (DCM). DCMs are ecologically important hot spots of primary production and nutrient cycling, and their location can determine vertical habitat gradients for primary consumers. Consequently, the drivers of DCM structure regulate many characteristics of aquatic food webs and biogeochemistry. Previous studies have identified light and thermal stratification as important drivers of summer DCM depth, but their relative importance across a broad range of lakes is not well resolved. We analyzed profiles of chlorophyll fluorescence, temperature, and light during summer stratification from 100 lakes in the Global Lake Ecological Observatory Network (GLEON) and quantified two characteristics of DCM structure: depth and thickness. While DCMs do form in oligotrophic lakes, we found that they can also form in eutrophic to dystrophic lakes. Using a random forest algorithm, we assessed the relative importance of variables associated with light attenuation vs. thermal stratification for predicting DCM structure in lakes that spanned broad gradients of morphometry and transparency. Our analyses revealed that light attenuation was a more important predictor of DCM depth than thermal stratification and that DCMs deepen with increasing lake clarity. DCM thickness was best predicted by lake size with larger lakes having thicker DCMs. Additionally, our analysis demonstrates that the relative importance of light and thermal stratification on DCM structure is not uniform across a diversity of lake types. Y1 - 2018 U6 - https://doi.org/10.1002/lno.10656 SN - 0024-3590 SN - 1939-5590 VL - 63 IS - 2 SP - 628 EP - 646 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Weithoff, Guntram A1 - Beisner, Beatrix E. T1 - Measures and Approaches in Trait-Based Phytoplankton Community Ecology BT - From Freshwater to Marine Ecosystems JF - Frontiers in Marine Science N2 - Trait-based approaches to investigate (short- and long-term) phytoplankton dynamics and community assembly have become increasingly popular in freshwater and marine science. Although the nature of the pelagic habitat and the main phytoplankton taxa and ecology are relatively similar in both marine and freshwater systems, the lines of research have evolved, at least in part, separately. We compare and contrast the approaches adopted in marine and freshwater ecosystems with respect to phytoplankton functional traits. We note differences in study goals relating to functional trait use that assess community assembly and those that relate to ecosystem processes and biogeochemical cycling that affect the type of characteristics assigned as traits to phytoplankton taxa. Specific phytoplankton traits relevant for ecological function are examined in relation to herbivory, amplitude of environmental change and spatial and temporal scales of study. Major differences are identified, including the shorter time scale for regular environmental change in freshwater ecosystems compared to that in the open oceans as well as the type of sampling done by researchers based on site-accessibility. Overall, we encourage researchers to better motivate why they apply trait-based analyses to their studies and to make use of process-driven approaches, which are more common in marine studies. We further propose fully comparative trait studies conducted along the habitat gradient spanning freshwater to brackish to marine systems, or along geographic gradients. Such studies will benefit from the combined strength of both fields. KW - algae KW - functional traits KW - ocean KW - lake KW - biogeochemistry KW - community assembly Y1 - 2019 U6 - https://doi.org/10.3389/fmars.2019.00040 SN - 2296-7745 VL - 6 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Weithoff, Guntram A1 - Beisner, Beatrix E. T1 - Measures and Approaches in Trait-Based Phytoplankton Community Ecology BT - From Freshwater to Marine Ecosystems T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Trait-based approaches to investigate (short- and long-term) phytoplankton dynamics and community assembly have become increasingly popular in freshwater and marine science. Although the nature of the pelagic habitat and the main phytoplankton taxa and ecology are relatively similar in both marine and freshwater systems, the lines of research have evolved, at least in part, separately. We compare and contrast the approaches adopted in marine and freshwater ecosystems with respect to phytoplankton functional traits. We note differences in study goals relating to functional trait use that assess community assembly and those that relate to ecosystem processes and biogeochemical cycling that affect the type of characteristics assigned as traits to phytoplankton taxa. Specific phytoplankton traits relevant for ecological function are examined in relation to herbivory, amplitude of environmental change and spatial and temporal scales of study. Major differences are identified, including the shorter time scale for regular environmental change in freshwater ecosystems compared to that in the open oceans as well as the type of sampling done by researchers based on site-accessibility. Overall, we encourage researchers to better motivate why they apply trait-based analyses to their studies and to make use of process-driven approaches, which are more common in marine studies. We further propose fully comparative trait studies conducted along the habitat gradient spanning freshwater to brackish to marine systems, or along geographic gradients. Such studies will benefit from the combined strength of both fields. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 679 KW - algae KW - functional traits KW - ocean KW - lake KW - biogeochemistry KW - community assembly Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-425814 SN - 1866-8372 IS - 679 ER -