TY - JOUR A1 - Balta Beylergil, Sinem A1 - Beck, Anne A1 - Deserno, Lorenz A1 - Lorenz, Robert C. A1 - Rapp, Michael Armin A1 - Schlagenhauf, Florian A1 - Heinz, Andreas A1 - Obermayer, Klaus T1 - Dorsolateral prefrontal cortex contributes to the impaired behavioral adaptation in alcohol dependence JF - NeuroImage: Clinical : a journal of diseases affecting the nervous system N2 - Substance-dependent individuals often lack the ability to adjust decisions flexibly in response to the changes in reward contingencies. Prediction errors (PEs) are thought to mediate flexible decision-making by updating the reward values associated with available actions. In this study, we explored whether the neurobiological correlates of PEs are altered in alcohol dependence. Behavioral, and functional magnetic resonance imaging (fMRI) data were simultaneously acquired from 34 abstinent alcohol-dependent patients (ADP) and 26 healthy controls (HC) during a probabilistic reward-guided decision-making task with dynamically changing reinforcement contingencies. A hierarchical Bayesian inference method was used to fit and compare learning models with different assumptions about the amount of task-related information subjects may have inferred during the experiment. Here, we observed that the best-fitting model was a modified Rescorla-Wagner type model, the “double-update” model, which assumes that subjects infer the knowledge that reward contingencies are anti-correlated, and integrate both actual and hypothetical outcomes into their decisions. Moreover, comparison of the best-fitting model's parameters showed that ADP were less sensitive to punishments compared to HC. Hence, decisions of ADP after punishments were loosely coupled with the expected reward values assigned to them. A correlation analysis between the model-generated PEs and the fMRI data revealed a reduced association between these PEs and the BOLD activity in the dorsolateral prefrontal cortex (DLPFC) of ADP. A hemispheric asymmetry was observed in the DLPFC when positive and negative PE signals were analyzed separately. The right DLPFC activity in ADP showed a reduced correlation with positive PEs. On the other hand, ADP, particularly the patients with high dependence severity, recruited the left DLPFC to a lesser extent than HC for processing negative PE signals. These results suggest that the DLPFC, which has been linked to adaptive control of action selection, may play an important role in cognitive inflexibility observed in alcohol dependence when reinforcement contingencies change. Particularly, the left DLPFC may contribute to this impaired behavioral adaptation, possibly by impeding the extinction of the actions that no longer lead to a reward. KW - Alcohol dependence KW - Prediction error KW - Reinforcement learning KW - Reversal learning KW - Dorsolateral prefrontal cortex KW - Decision-making Y1 - 2017 U6 - https://doi.org/10.1016/j.nicl.2017.04.010 SN - 2213-1582 VL - 15 SP - 80 EP - 94 PB - Elsevier CY - Oxford ER - TY - THES A1 - Beck, Anne T1 - Hegemonie und Geschlecht in Bettine von Arnims "Dieses Buch gehört dem König" im Kontext ausgewählter Frauenromane am Beginn des 19. Jahrhunderts Y1 - 2011 CY - Potsdam ER - TY - JOUR A1 - Deserno, Lorenz A1 - Beck, Anne A1 - Huys, Quentin J. M. A1 - Lorenz, Robert C. A1 - Buchert, Ralph A1 - Buchholz, Hans-Georg A1 - Plotkin, Michail A1 - Kumakara, Yoshitaka A1 - Cumming, Paul A1 - Heinze, Hans-Jochen A1 - Grace, Anthony A. A1 - Rapp, Michael Armin A1 - Schlagenhauf, Florian A1 - Heinz, Andreas T1 - Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum JF - European journal of neuroscience N2 - Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine-driven reinforcement learning towards drug-related reward at the expense of non-drug-related reward. Indeed, in alcohol-dependent patients, reactivity in dopaminergic target areas is shifted from non-drug-related stimuli towards drug-related stimuli. Such hijacked' dopamine signals may impair flexible learning from non-drug-related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs) during a probabilistic reversal learning task in recently detoxified alcohol-dependent patients and healthy controls (N=27). All participants also underwent 6-[F-18]fluoro-DOPA positron emission tomography to assess ventral striatal dopamine synthesis capacity. Neither ventral striatal activation by RPEs nor striatal dopamine synthesis capacity differed between groups. However, ventral striatal coding of RPEs correlated inversely with craving in patients. Furthermore, we found a negative correlation between ventral striatal coding of RPEs and dopamine synthesis capacity in healthy controls, but not in alcohol-dependent patients. Moderator analyses showed that the magnitude of the association between dopamine synthesis capacity and RPE coding depended on the amount of chronic, habitual alcohol intake. Despite the relatively small sample size, a power analysis supports the reported results. Using a multimodal imaging approach, this study suggests that dopaminergic modulation of neural learning signals is disrupted in alcohol dependence in proportion to long-term alcohol intake of patients. Alcohol intake may perpetuate itself by interfering with dopaminergic modulation of neural learning signals in the ventral striatum, thus increasing craving for habitual drug intake. KW - alcohol addiction KW - dopamine KW - fMRI KW - PET KW - prediction error Y1 - 2015 U6 - https://doi.org/10.1111/ejn.12802 SN - 0953-816X SN - 1460-9568 VL - 41 IS - 4 SP - 477 EP - 486 PB - Wiley-Blackwell CY - Hoboken ER - TY - GEN A1 - Friedel, Eva A1 - Schlagenhauf, Florian A1 - Beck, Anne A1 - Dolan, Raymond J. A1 - Huys, Quentin J. M. A1 - Rapp, Michael Armin A1 - Heinz, Andreas T1 - The effects of life stress and neural learning signals on fluid intelligence T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Fluid intelligence (fluid IQ), defined as the capacity for rapid problem solving and behavioral adaptation, is known to be modulated by learning and experience. Both stressful life events (SLES) and neural correlates of learning [specifically, a key mediator of adaptive learning in the brain, namely the ventral striatal representation of prediction errors (PE)] have been shown to be associated with individual differences in fluid IQ. Here, we examine the interaction between adaptive learning signals (using a well-characterized probabilistic reversal learning task in combination with fMRI) and SLES on fluid IQ measures. We find that the correlation between ventral striatal BOLD PE and fluid IQ, which we have previously reported, is quantitatively modulated by the amount of reported SLES. Thus, after experiencing adversity, basic neuronal learning signatures appear to align more closely with a general measure of flexible learning (fluid IQ), a finding complementing studies on the effects of acute stress on learning. The results suggest that an understanding of the neurobiological correlates of trait variables like fluid IQ needs to take socioemotional influences such as chronic stress into account. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 621 KW - reinforcement learning KW - prediction error signal KW - ventral striatum KW - stress KW - intelligence Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435140 SN - 1866-8372 IS - 621 SP - 35 EP - 43 ER - TY - JOUR A1 - Friedel, Eva A1 - Schlagenhauf, Florian A1 - Beck, Anne A1 - Dolan, Raymond J. A1 - Huys, Quentin J. M. A1 - Rapp, Michael Armin A1 - Heinz, Andreas T1 - The effects of life stress and neural learning signals on fluid intelligence JF - European archives of psychiatry and clinical neuroscience : official organ of the German Society for Biological Psychiatry N2 - Fluid intelligence (fluid IQ), defined as the capacity for rapid problem solving and behavioral adaptation, is known to be modulated by learning and experience. Both stressful life events (SLES) and neural correlates of learning [specifically, a key mediator of adaptive learning in the brain, namely the ventral striatal representation of prediction errors (PE)] have been shown to be associated with individual differences in fluid IQ. Here, we examine the interaction between adaptive learning signals (using a well-characterized probabilistic reversal learning task in combination with fMRI) and SLES on fluid IQ measures. We find that the correlation between ventral striatal BOLD PE and fluid IQ, which we have previously reported, is quantitatively modulated by the amount of reported SLES. Thus, after experiencing adversity, basic neuronal learning signatures appear to align more closely with a general measure of flexible learning (fluid IQ), a finding complementing studies on the effects of acute stress on learning. The results suggest that an understanding of the neurobiological correlates of trait variables like fluid IQ needs to take socioemotional influences such as chronic stress into account. KW - Reinforcement learning KW - Prediction error signal KW - Ventral striatum KW - Stress KW - Intelligence Y1 - 2015 U6 - https://doi.org/10.1007/s00406-014-0519-3 SN - 0940-1334 SN - 1433-8491 VL - 265 IS - 1 SP - 35 EP - 43 PB - Springer CY - Heidelberg ER - TY - CHAP A1 - Haegele, Claudia A1 - Friedel, Eva A1 - Schlagenhauf, Florian A1 - Sterzer, Philipp A1 - Beck, Anne A1 - Bermpohl, Felix A1 - Rapp, Michael Armin A1 - Stoy, Meline A1 - Stroehle, Andreas A1 - Dolan, Raymond J. A1 - Heinz, Andreas T1 - Reward expectation and affective responses across psychiatric disorders - A dimensional approach T2 - Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry KW - dimensional KW - transdiagnostic KW - reward system KW - ventral striatum KW - fMRI Y1 - 2014 SN - 0006-3223 SN - 1873-2402 VL - 75 IS - 9 SP - 91S EP - 92S PB - Elsevier CY - New York ER - TY - JOUR A1 - Haegele, Claudia A1 - Schlagenhauf, Florian A1 - Rapp, Michael Armin A1 - Sterzer, Philipp A1 - Beck, Anne A1 - Bermpohl, Felix A1 - Stoy, Meline A1 - Stroehle, Andreas A1 - Wittchen, Hans-Ulrich A1 - Dolan, Raymond J. A1 - Heinz, Andreas T1 - Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders JF - Psychopharmacology N2 - A dimensional approach in psychiatry aims to identify core mechanisms of mental disorders across nosological boundaries. We compared anticipation of reward between major psychiatric disorders, and investigated whether reward anticipation is impaired in several mental disorders and whether there is a common psychopathological correlate (negative mood) of such an impairment. During reward anticipation, we observed significant group differences in ventral striatal (VS) activation: patients with schizophrenia, alcohol dependence, and major depression showed significantly less ventral striatal activation compared to healthy controls. Depressive symptoms correlated with dysfunction in reward anticipation regardless of diagnostic entity. There was no significant correlation between anxiety symptoms and VS functional activation. Our findings demonstrate a neurobiological dysfunction related to reward prediction that transcended disorder categories and was related to measures of depressed mood. The findings underline the potential of a dimensional approach in psychiatry and strengthen the hypothesis that neurobiological research in psychiatric disorders can be targeted at core mechanisms that are likely to be implicated in a range of clinical entities. KW - Dimensional KW - fMRI KW - Reward system KW - Ventral striatum KW - Monetary incentive delay task KW - Depressive symptoms Y1 - 2015 U6 - https://doi.org/10.1007/s00213-014-3662-7 SN - 0033-3158 SN - 1432-2072 VL - 232 IS - 2 SP - 331 EP - 341 PB - Springer CY - New York ER - TY - GEN A1 - Heinz, Andreas A1 - Beck, Anne A1 - Rapp, Michael Armin T1 - Alcohol as an Environmental Mortality Hazard T2 - JAMA psychiatry Y1 - 2016 U6 - https://doi.org/10.1001/jamapsychiatry.2016.0399 SN - 2168-622X SN - 2168-6238 VL - 73 SP - 549 EP - 550 PB - American Veterinary Medical Association CY - Chicago ER - TY - JOUR A1 - Heinz, Andreas A1 - Kiefer, Falk A1 - Smolka, Michael N. A1 - Endrass, Tanja A1 - Beste, Christian A1 - Beck, Anne A1 - Liu, Shuyan A1 - Genauck, Alexander A1 - Romund, Lydia A1 - Rapp, Michael Armin A1 - Tost, Heike A1 - Spanagel, Rainer T1 - Addiction research consortium: losing and regaining control over drug intake (ReCoDe) - from trajectories to mechanisms and interventions JF - Addiction Biology N2 - One of the major risk factors for global death and disability is alcohol, tobacco, and illicit drug use. While there is increasing knowledge with respect to individual factors promoting the initiation and maintenance of substance use disorders (SUDs), disease trajectories involved in losing and regaining control over drug intake (ReCoDe) are still not well described. Our newly formed German Collaborative Research Centre (CRC) on ReCoDe has an interdisciplinary approach funded by the German Research Foundation (DFG) with a 12-year perspective. The main goals of our research consortium are (i) to identify triggers and modifying factors that longitudinally modulate the trajectories of losing and regaining control over drug consumption in real life, (ii) to study underlying behavioral, cognitive, and neurobiological mechanisms, and (iii) to implicate mechanism-based interventions. These goals will be achieved by: (i) using mobile health (m-health) tools to longitudinally monitor the effects of triggers (drug cues, stressors, and priming doses) and modify factors (eg, age, gender, physical activity, and cognitive control) on drug consumption patterns in real-life conditions and in animal models of addiction; (ii) the identification and computational modeling of key mechanisms mediating the effects of such triggers and modifying factors on goal-directed, habitual, and compulsive aspects of behavior from human studies and animal models; and (iii) developing and testing interventions that specifically target the underlying mechanisms for regaining control over drug intake. KW - addiction KW - alternative rewards KW - animal and computational models KW - cognitive-behavioral control KW - craving and relapse KW - habit formation Y1 - 2019 VL - 25 IS - 2 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - GEN A1 - Heinz, Andreas A1 - Kiefer, Falk A1 - Smolka, Michael N. A1 - Endrass, Tanja A1 - Beste, Christian A1 - Beck, Anne A1 - Liu, Shuyan A1 - Genauck, Alexander A1 - Romund, Lydia A1 - Rapp, Michael Armin A1 - Tost, Heike A1 - Spanagel, Rainer T1 - Addiction research consortium: losing and regaining control over drug intake (ReCoDe) - from trajectories to mechanisms and interventions T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - One of the major risk factors for global death and disability is alcohol, tobacco, and illicit drug use. While there is increasing knowledge with respect to individual factors promoting the initiation and maintenance of substance use disorders (SUDs), disease trajectories involved in losing and regaining control over drug intake (ReCoDe) are still not well described. Our newly formed German Collaborative Research Centre (CRC) on ReCoDe has an interdisciplinary approach funded by the German Research Foundation (DFG) with a 12-year perspective. The main goals of our research consortium are (i) to identify triggers and modifying factors that longitudinally modulate the trajectories of losing and regaining control over drug consumption in real life, (ii) to study underlying behavioral, cognitive, and neurobiological mechanisms, and (iii) to implicate mechanism-based interventions. These goals will be achieved by: (i) using mobile health (m-health) tools to longitudinally monitor the effects of triggers (drug cues, stressors, and priming doses) and modify factors (eg, age, gender, physical activity, and cognitive control) on drug consumption patterns in real-life conditions and in animal models of addiction; (ii) the identification and computational modeling of key mechanisms mediating the effects of such triggers and modifying factors on goal-directed, habitual, and compulsive aspects of behavior from human studies and animal models; and (iii) developing and testing interventions that specifically target the underlying mechanisms for regaining control over drug intake. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 727 KW - addiction KW - alternative rewards KW - animal and computational models KW - cognitive-behavioral control KW - craving and relapse KW - habit formation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525972 SN - 1866-8364 IS - 2 ER -