TY - THES A1 - Spallanzani, Roberta T1 - Li and B in ascending magmas: an experimental study on their mobility and isotopic fractionation T1 - Li und B in aufsteigenden Magmen: eine experimentelle Studie über ihre Mobilität und Isotopenfraktionierung N2 - This research study focuses on the behaviour of Li and B during magmatic ascent, and decompression-driven degassing related to volcanic systems. The main objective of this dissertation is to determine whether it is possible to use the diffusion properties of the two trace elements as a tool to trace magmatic ascent rate. With this objective, diffusion-couple and decompression experiments have been performed in order to study Li and B mobility in intra-melt conditions first, and then in an evolving system during decompression-driven degassing. Synthetic glasses were prepared with rhyolitic composition and an initial water content of 4.2 wt%, and all the experiments were performed using an internally heated pressure vessel, in order to ensure a precise control on the experimental parameters such as temperature and pressure. Diffusion-couple experiments were performed with a fix pressure 300 MPa. The temperature was varied in the range of 700-1250 °C with durations between 0 seconds and 24 hours. The diffusion-couple results show that Li diffusivity is very fast and starts already at very low temperature. Significant isotopic fractionation occurs due to the faster mobility of 6Li compared to 7Li. Boron diffusion is also accelerated by the presence of water, but the results of the isotopic ratios are unclear, and further investigation would be necessary to well constrain the isotopic fractionation process of boron in hydrous silicate melts. The isotopic ratios results show that boron isotopic fractionation might be affected by the speciation of boron in the silicate melt structure, as 10B and 11B tend to have tetrahedral and trigonal coordination, respectively. Several decompression experiments were performed at 900 °C and 1000 °C, with pressures going from 300 MPa to 71-77 MPa and durations of 30 minutes, two, five and ten hours, in order to trigger water exsolution and the formation of vesicles in the sample. Textural observations and the calculation of the bubble number density confirmed that the bubble size and distribution after decompression is directly proportional to the decompression rate. The overall SIMS results of Li and B show that the two trace elements tend to progressively decrease their concentration with decreasing decompression rates. This is explained because for longer decompression times, the diffusion of Li and B into the bubbles has more time to progress and the melt continuously loses volatiles as the bubbles expand their volumes. For fast decompression, Li and B results show a concentration increase with a δ7Li and δ11B decrease close to the bubble interface, related to the sudden formation of the gas bubble, and the occurrence of a diffusion process in the opposite direction, from the bubble meniscus to the unaltered melt. When the bubble growth becomes dominant and Li and B start to exsolve into the gas phase, the silicate melt close to the bubble gets depleted in Li and B, because of a stronger diffusion of the trace elements into the bubble. Our data are being applied to different models, aiming to combine the dynamics of bubble nucleation and growth with the evolution of trace elements concentration and isotopic ratios. Here, first considerations on these models will be presented, giving concluding remarks on this research study. All in all, the final remarks constitute a good starting point for further investigations. These results are a promising base to continue to study this process, and Li and B can indeed show clear dependences on decompression-related magma ascent rates in volcanic systems. N2 - Diese Forschungsstudie konzentriert sich auf das Verhalten von Li und B während des magmatischen Aufstiegs und der Druckentlastungsbedingten Entgasung im Zusammenhang mit vulkanischen Systemen. Das Hauptziel dieser Dissertation besteht darin, festzustellen, ob es möglich ist, die Diffusionseigenschaften der beiden Spurenelemente als Instrument zur Verfolgung der magmatischen Aufstiegsgeschwindigkeit zu nutzen. Unter Verwendung von synthetischen Gläsern mit rhyolitischer Zusammensetzung und einem Wassergehalt von 4,2 Gew.-% wurden Diffusionspaar- und Druckentlastungsexperimente durchgeführt, um die Mobilität von Li und B zunächst in der Schmelze und dann in einem sich entwickelnden System während der Druckentlastungsgetriebenen Entgasung zu untersuchen. Diffusionspaar wurden mit einem festen Druck von 300 MPa durchgeführt. Die Temperatur wurde im Bereich von 700-1250 °C variiert, wobei die Dauer zwischen 0 Sekunden und 24 Stunden lag. Unsere Ergebnisse zeigen, dass die Diffusionsfähigkeit von Li sehr schnell ist und bei sehr niedrigen Temperaturen auftritt. Eine Isotopenfraktionierung findet aufgrund der schnelleren Mobilität von 6Li im Vergleich zu 7Li statt. Die Diffusion von Bor wird durch die Anwesenheit von Wasser ebenfalls beschleunigt, bleibt aber langsamer als die von Li. Die Ergebnisse der Isotopenverhältnisse zeigen, dass die Bor-Isotopenfraktionierung durch die Speziation von Bor in der Silikatschmelze beeinflusst werden könnte, da 10B und 11B tendenziell eine tetraedrische bzw. trigonale Koordination aufweisen. Druckentlastungsversuche wurden bei 900 °C und 1000 °C mit Drücken von 300 MPa bis 71-77 MPa und einer Dauer von 30 Minuten, zwei, fünf und zehn Stunden durchgeführt, um die Wasserauflösung und die Bildung von Gasblasen in der Probe auszulösen. Texturbeobachtungen und die Berechnung der Blasenanzahldichte bestätigten, dass die Blasengröße und -verteilung nach der Druckentlastung direkt proportional zur Druckentlastungsrate ist. Generell zeigen die SIMS-Analysergebnisse von Li und B, dass die Konzentration der beiden Spurenelemente mit abnehmender Druckentlastungsgeschwindigkeit allmählich abnimmt. Dies ist darauf zurückzuführen, dass bei längeren Druckentlastungszeiten mehr Zeit für die Diffusion von Li und B in die Blasen zur Verfügung steht und die Schmelze kontinuierlich flüchtige Bestandteile verliert, während die Blasen ihr Volumen ausdehnen. Bei schnellen Druckentlastungen zeigen die Li- und B-Ergebnisse einen Konzentrationsanstieg mit einer δ7Li- und δ11B-Abnahme in der Nähe der Blasengrenzfläche, was mit der plötzlichen Bildung der Glasbläser und dem Auftreten eines Diffusionsprozesses in der entgegengesetzten Richtung, vom Blasenmeniskus zur unveränderten Schmelze, zusammenhängt. Wenn das Blasenwachstum dominiert und Li und B in die Gasphase übergehen, verarmt die Silikat Schmelze in der Nähe der Blase an Li und B, da die Spurenelemente stärker in die Blase diffundieren. Unsere Daten werden auf verschiedene Modelle angewandt, die darauf abzielen, die Dynamik der Blasenkernbildung und des Blasenwachstums mit der Entwicklung der Spurenelementkonzentration und des Isotopenverhältnisses zu kombinieren. Hier werden erste Überlegungen zu diesen Modellen vorgestellt und abschließende Bemerkungen zu dieser Forschungsstudie gemacht. Diese Ergebnisse sind eine vielversprechende Grundlage für die weitere Untersuchung von Li und B, um dekompressionsbedingte Magma-Aufstiegsraten in vulkanischen Systemen zu ermitteln. KW - magma degassing KW - diffusion KW - stable isotopes KW - isotopic fractionation KW - Diffusion KW - Isotopenfraktionierung KW - Magma-Entgasung KW - stabile Isotope Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-560619 ER - TY - THES A1 - Hennig, Theresa T1 - Uranium migration in the Opalinus Clay quantified on the host rock scale with reactive transport simulations T1 - Uranmigration im Opalinuston quantifiziert für die Wirtsgesteinsskala mit reaktiven Transportsimulationen N2 - Humankind and their environment need to be protected from the harmful effects of spent nuclear fuel, and therefore disposal in deep geological formations is favoured worldwide. Suitability of potential host rocks is evaluated, among others, by the retention capacity with respect to radionuclides. Safety assessments are based on the quantification of radionuclide migration lengths with numerical simulations as experiments cannot cover the required temporal (1 Ma) and spatial scales (>100 m). Aim of the present thesis is to assess the migration of uranium, a geochemically complex radionuclide, in the potential host rock Opalinus Clay. Radionuclide migration in clay formations is governed by diffusion due to their low permeability and retarded by sorption. Both processes highly depend on pore water geochemistry and mineralogy that vary between different facies. Diffusion is quantified with the single-component (SC) approach using one diffusion coefficient for all species and the process-based multi-component (MC) option. With this, each species is assigned its own diffusion coefficient and the interaction with the diffuse double layer is taken into account. Sorption is integrated via a bottom-up approach using mechanistic surface complexation models and cation exchange. Therefore, reactive transport simulations are conducted with the geochemical code PHREEQC to quantify uranium migration, i.e. diffusion and sorption, as a function of mineralogical and geochemical heterogeneities on the host rock scale. Sorption processes are facies dependent. Migration lengths vary between the Opalinus Clay facies by up to 10 m. Thereby, the geochemistry of the pore water, in particular the partial pressure of carbon dioxide (pCO2), is more decisive for the sorption capacity than the amount of clay minerals. Nevertheless, higher clay mineral quantities compensate geochemical variations. Consequently, sorption processes must be quantified as a function of pore water geochemistry in contact with the mineral assemblage. Uranium diffusion in the Opalinus Clay is facies independent. Speciation is dominated by aqueous ternary complexes of U(VI) with calcium and carbonate. Differences in the migration lengths between SC and MC diffusion are with +/-5 m negligible. Further, the application of the MC approach highly depends on the quality and availability of the underlying data. Therefore, diffusion processes can be adequately quantified with the SC approach using experimentally determined diffusion coefficients. The hydrogeological system governs pore water geochemistry within the formation rather than the mineralogy. Diffusive exchange with the adjacent aquifers established geochemical gradients over geological time scales that can enhance migration by up to 25 m. Consequently, uranium sorption processes must be quantified following the identified priority: pCO2 > hydrogeology > mineralogy. The presented research provides a workflow and orientation for other potential disposal sites with similar pore water geochemistry due to the identified mechanisms and dependencies. With a maximum migration length of 70 m, the retention capacity of the Opalinus Clay with respect to uranium is sufficient to fulfill the German legal minimum requirement of a thickness of at least 100 m. N2 - Zum Schutz von Mensch und Umwelt vor den schädlichen Auswirkungen abgebrannter Brennelemente, wird weltweit die Endlagerung in tiefen geologischen Formationen favorisiert. Daher ist das Rückhaltevermögen potenzieller Wirtsgesteine gegenüber Radionukliden ein wichtiges Kriterium. Sicherheitsbewertungen basieren auf der Quantifizierung der Migration mit numerischen Simulationen, da Experimente die erforderlichen zeitlichen (1 Ma) und räumlichen Skalen (>100 m) nicht abdecken können. Ziel der Dissertation ist es, die Migration des geochemisch komplexen Radionuklids Uran im potenziellen Wirtsgestein Opalinuston zu bewerten. In Tonformationen wird die Radionuklidmigration aufgrund der geringen Durchlässigkeit von Diffusion bestimmt und durch Sorption verzögert. Beide Prozesse hängen stark von der Porenwassergeochemie und Mineralogie ab, die zwischen verschiedenen Fazies variieren. Die Diffusion wird mit dem Einkomponenten- (SC) und Mehrkomponentenansatz (MC) quantifiziert. Nach dem SC-Ansatz wird ein Diffusionskoeffizient für alle Spezies verwendet, wohingegen mit der MC-Option individuelle Werte zugewiesen und die Interaktion mit der diffusen Doppelschicht berücksichtigt wird. Die Sorption ist mit Hilfe mechanistischer Oberflächenkomplexierungsmodelle und Kationenaustausch integriert. Die Durchführung reaktiver Transportsimulationen mit dem Code PHREEQC ermöglicht die Quantifizierung der Uranmigration, d. h. Diffusion und Sorption, in Abhängigkeit der Mineralogie und Porenwassergeochemie für die Wirtsgesteinsskala. Sorptionsprozesse sind faziesabhängig. Die Migrationslängen variieren um bis zu 10 m zwischen den Fazies aufgrund von Unterschieden in der Porenwassergeochemie. Dabei ist insbesondere der Partialdruck des Kohlendioxids (pCO2) entscheidender für die Sorptionskapazität als die Menge an Tonmineralen. Allerdings kompensieren höhere Tonmineralmengen geochemische Schwankungen. Folglich müssen Sorptionsprozesse in Abhängigkeit der Porenwassergeochemie quantifiziert werden. Urandiffusion ist faziesunabhängig. Die Speziation wird durch aquatische ternäre Komplexe von U(VI) mit Kalzium und Karbonat dominiert. Die Unterschiede in den Migrationslängen zwischen SC- und MC-Diffusion sind mit +/-5 m vernachlässigbar. Die Anwendung des MC-Ansatzes hängt stark von der Qualität und Verfügbarkeit der zugrunde liegenden Daten ab. Diffusionsprozesse können also mit dem SC-Ansatz unter Verwendung experimentell ermittelter Diffusionskoeffizienten quantifiziert werden. Haupteinflussfaktor auf die Porenwassergeochemie ist das hydrogeologische System und nicht die Mineralogie. Der diffusive Austausch mit den angrenzenden Aquiferen hat über geologische Zeiträume geochemische Gradienten geschaffen, die die Migration um bis zu 25 m verlängern können. Folglich müssen Sorptionsprozesse nach der identifizierten Priorität quantifiziert werden: pCO2 > Hydrogeologie > Mineralogie. Die ermittelten Abhängigkeiten dienen als Orientierung für andere potenzielle Endlagerstandorte mit ähnlicher Porenwassergeochemie. Mit einer maximalen Migration von 70 m reicht das Rückhaltevermögen des Opalinustons gegenüber Uran aus, um die deutsche gesetzliche Mindestanforderung von 100 m Mächtigkeit zu erfüllen. KW - uranium KW - Opalinus Clay KW - PHREEQC KW - diffusion KW - sorption KW - nuclear waste disposal KW - reactive transport simulation KW - host rock scale KW - Opalinuston KW - PHREEQC KW - Diffusion KW - Wirtsgesteinsskala KW - Endlagerung nuklearer Abfälle KW - reaktive Transportsimulation KW - Sorption KW - Uran Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-552700 ER -