TY - THES A1 - Kobabe, Svenja T1 - Charakterisierung der mikrobiellen Lebensgemeinschaft eines sibirischen Permafrostbodens T1 - Characterisation of microbial community composition of a Siberian tundra soil N2 - Die vorliegende Arbeit wurde im Rahmen des multidisziplinären Deutsch-Russischen Verbundprojektes "Laptev See 2000" erstellt. Die dargestellten bodenkundlichen und mikro-biologischen Untersuchungen verfolgten das Ziel die mikrobielle Lebensgemeinschaft eines Permafrostbodens im sibirischen Lena Delta zu charakterisieren, wobei den methanogenen Archaea besondere Beachtung zukam. Die Probennahme wurde im August 2001 im zentralen Lenadelta, auf der Insel Samoylov durchgeführt. Das Delta liegt im Bereich des kontinuierlichen Permafrostes, was bedeutet, dass nur eine flache saisonale Auftauschicht während der Sommermonate auftaut. Das untersuchte Bodenprofil lag im Zentrum eines für die Landschaft repräsentativen Low Center Polygons. Zum Zeitpunkt der Beprobung betrug die Auftautiefe des untersuchten Bodens 45 cm.. Der Wasserstand lag zum Untersuchungszeitpunkt 18 cm unter der Geländeoberfläche, so dass alle tiefer liegenden Horizonte durch anaerobe Verhältnisse charakterisiert waren. Die Untersuchung der bodenkundlichen Parameter ergab unter anderem eine mit zunehmender Tiefe abnehmende Konzentration von Kohlenstoff und Stickstoff, sowie eine Abnahme von Temperatur und Wurzeldichte. Um die Auswirkungen der sich mit der Tiefe verändernden Bodeneigenschaften auf die Mikroorganismen zu ermitteln, wurden die Mikroorganismenpopulationen der verschiedenen Bodentiefen mit Hilfe der Fluoreszenz in situ Hybridisierung hinsichtlich ihrer Anzahl, Aktivität und Zusammensetzung beschrieben. Für die Charakterisierung des physiologischen Profils dieser Gemeinschaften, bezüglich der von ihr umsetzbaren Kohlenstoffverbindungen, wurden BIOLOG Mikrotiterplatten unter den in situ Bedingungen angepassten Bedingungen eingesetzt. Die sich im Profil verändernden Bodenparameter, vor allem die abnehmende Substratversorgung, die geringe Temperatur und die anaeroben Verhältnisse in den unteren Bodenschichten führten zu einer Veränderung der Mikroorganismenpopulation im Bodenprofil. So nahm von oben nach unten die Gesamtanzahl der ermittelten Mikroorganismen von 23,0 × 108 auf 1,2 × 108 Zellen g-1 ab. Gleichzeitig sank der Anteil der aktiven Zellen von 59% auf 33%. Das bedeutet, dass im Bereich von 0-5 cm 35mal mehr aktive Zellen g-1 als im Bereich von 40-45 cm gefunden wurden. Durch den Einsatz spezieller rRNS-Sonden konn-te zusätzlich eine Abnahme der Diversität mit zunehmender Bodentiefe nachgewiesen werden. Die geringere Aktivität der Population in den unteren Horizonten sowie die Unterschiede in der Zusammensetzung wirkten sich auf den Abbau der organischen Substanz aus. So wur-den die mit Hilfe der BIOLOG Mikrotiterplatten angebotenen Substanzen in größerer Tiefe langsamer und unvollständiger abgebaut. Insbesondere in den oberen 5 cm konnten einige der angebotenen Polymere und Kohlehydrate deutlich besser als im restlichen Profil umge-setzt werden. Das außerdem unter anaeroben Versuchsbedingungen diese Substrate deutlich schlechter umgesetzt wurden, kann so interpretiert werden, dass die konstant anaeroben Bedingungen in den unteren Horizonten ein Auftreten der Arten, die diese Substrate umset-zen, erschweren. Die in den oberen, aeroben Bodenabschnitten wesentlich höheren Zellzahlen und Aktivitäten und die dadurch schnellere C-Umsetzung führen auch zu einer besseren Substratversorgung der methanogenen Archaea in den makroskopisch aeroben Horizonten. Die erhöhte Substratverfügbarkeit erklärt die Tatsache, dass im Bereich von 0-5 cm die meisten methanogenen Archaea gefunden wurden, obwohl sich dieser Bereich zum Zeitpunkt der Probennahme oberhalb des wassergesättigten Bodenbereichs befand. Trotz der aeroben Bedingungen in, liegt im Bereich von 5 10 cm die für die methanogenen Archaea am besten geeignete Kombination aus Substratangebot und anaeroben Nischen vor. Hinzu kommt, dass in diesen Tiefen die Sommertemperaturen etwas höher liegen als in den tieferen Horizonten, was wiederum die Aktivität positiv beeinflusst. Bei zusammenfassender Betrachtung der Untersuchungsergebnisse von Anzahl, Aktivität, Zusammensetzung und Leistung der gesamten, aber im besonderen auch der methanogenen Mikroorganismenpopulation wird deutlich, dass in dem untersuchten Bodenprofil unter ökologischen Gesichtspunkten die oberen 15-20 cm den für den C-Umsatz relevantesten Bereich darstellen. Das Zusammenspiel wichtiger Bodenparameter wie Bodentemperatur, Wasserstand, Nährstoffversorgung und Durchwurzelung führt dazu, dass in dem untersuchten Tundraboden in den oberen 15-20 cm eine wesentlich größere und diversere Anzahl an Mikroorganismen existiert, die für einen schnelleren und umfassenderen Kohlenstoffumsatz in diesem Bereich des active layers sorgt. N2 - The soil characteristics and the bacterial community of the active layer (0-45 cm) of a permafrost affected tundra soil were analysed. The composition of the bacterial community was investigated by fluorescence in situ hybridisation (FISH) while BIOLOG Ecoplates were used to characterize microbial communities by determining the ability of the communities to oxidize various carbon sources. Arctic tundra soils contain large amounts of organic carbon, accumulated in thick soil layers and are known as a major sink of atmospheric CO2. These soils are totally frozen throughout the year and only a thin active layer is unfrozen and shows biological activity during the short summer. To improve the understanding of how the carbon fluxes in the active layer are controlled, detailed analysis of composition, functionality and interaction of soil microorganisms was done. The FISH analyses of the active layer showed large variations in absolute cell numbers and in the composition of the active microbial community between the different horizons, which is caused by the different environmental conditions (e.g. soil temperature, amount of organic matter, aeration) in this vertically structured ecosystem. Results obtained by universal protein stain 5-(4,6-dichlorotriazin-2-yl)aminofluorescein (DTAF) showed an exponential decrease of total cell counts from the top to the bottom of the active layer (2.3 × 109 to 1.2 × 108 cells per g dry soil). By using FISH, up to 59% of the DTAF-detected cells could be detected in the surface horizon, and up to 84% of these FISH-detected cells could be affiliated to a known phylogenetic group. With increasing depth the amount of FISH-detectable cells decreased as well as the diversity of ascertained phylogenetic groups. The turnover of substrates offered on the BIOLOG Ecoplates was slower and less complete in the deeper soil horizons. Especially in the upper 5 cm the turnover of some of the polymeric substances and some carbohydrates was much better than in deeper parts of the soil. The interaction of important soil parameters (water table, nutrient availability, roots) leads to a larger and more diverse community in the upper 20 cm of the soil, which again cause a faster and more complete turnover in this part of the active layer. KW - Mikrobiologie KW - Angewandte Mikrobiologie KW - Bodenmikrobiologie KW - Methanemission KW - Dauerfrostboden KW - Sibirien KW - Fluoreszenz-in-situ-Hybridisierung KW - Len KW - Microbiology KW - Soil KW - methane KW - Siberia Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-5467 ER - TY - THES A1 - Wen, Xi T1 - Distribution patterns and environmental drivers of methane-cycling microorganisms in natural environments and restored wetlands N2 - Methane is an important greenhouse gas contributing to global climate change. Natural environments and restored wetlands contribute a large proportion to the global methane budget. Methanogenic archaea (methanogens) and methane oxidizing bacteria (methanotrophs), the biogenic producers and consumers of methane, play key roles in the methane cycle in those environments. A large number of studies revealed the distribution, diversity and composition of these microorganisms in individual habitats. However, uncertainties exist in predicting the response and feedback of methane-cycling microorganisms to future climate changes and related environmental changes due to the limited spatial scales considered so far, and due to a poor recognition of the biogeography of these important microorganisms combining global and local scales. With the aim of improving our understanding about whether and how methane-cycling microbial communities will be affected by a series of dynamic environmental factors in response to climate change, this PhD thesis investigates the biogeographic patterns of methane-cycling communities, and the driving factors which define these patterns at different spatial scales. At the global scale, a meta-analysis was performed by implementing 94 globally distributed public datasets together with environmental data from various natural environments including soils, lake sediments, estuaries, marine sediments, hydrothermal sediments and mud volcanos. In combination with a global biogeographic map of methanogenic archaea from multiple natural environments, this thesis revealed that biogeographic patterns of methanogens exist. The terrestrial habitats showed higher alpha diversities than marine environments. Methanoculleus and Methanosaeta (Methanothrix) are the most frequently detected taxa in marine habitats, while Methanoregula prevails in terrestrial habitats. Estuary ecosystems, the transition zones between marine and terrestrial/limnic ecosystems, have the highest methanogenic richness but comparably low methane emission rates. At the local scale, this study compared two rewetted fens with known high methane emissions in northeastern Germany, a coastal brackish fen (Hütelmoor) and a freshwater riparian fen (Polder Zarnekow). Consistent with different geochemical conditions and land-use history, the two rewetted fens exhibit dissimilar methanogenic and, especially, methanotrophic community compositions. The methanotrophic community was generally under-represented among the prokaryotic communities and both fens show similarly low ratios of methanotrophic to methanogenic abundances. Since few studies have characterized methane-cycling microorganisms in rewetted fens, this study provides first evidence that the rapid and well re-established methanogenic community in combination with the low and incomplete re-establishment of the methanotrophic community after rewetting contributes to elevated sustained methane fluxes following rewetting. Finally, this thesis demonstrates that dispersal limitation only slightly regulates the biogeographic distribution patterns of methanogenic microorganisms in natural environments and restored wetlands. Instead, their existence, adaption and establishment are more associated with the selective pressures under different environmental conditions. Salinity, pH and temperature are identified as the most important factors in shaping microbial community structure at different spatial scales (global versus terrestrial environments). Predicted changes in climate, such as increasing temperature, changes in precipitation patterns and increasing frequency of flooding events, are likely to induce a series of environmental alterations, which will either directly or indirectly affect the driving environmental forces of methanogenic communities, leading to changes in their community composition and thus potentially also in methane emission patterns in the future. N2 - Methan ist ein wichtiges Treibhausgas, das zum globalen Klimawandel beiträgt. Bedeutend für das globale Methanbudget sind unter anderem natürliche und wiedervernäßte Moore. Methanogene Archaeen (Methanogene) und Methan-oxidierende Bakterien (Methanotrophe) sind die biogenen Produzenten und Konsumenten von Methan. Daher nehmen sie global, und speziell in Mooren, eine Schlüsselrolle für das Methanbudget ein. Eine Vielzahl von Studien hat die Verteilung, Vielfalt und Zusammensetzung dieser Mikroorganismen in einzelnen Lebensräumen untersucht. Es bestehen jedoch Unsicherheiten in der Vorhersage, wie sie auf den globalen Wandel und auf die damit verbundenen Umweltveränderungen reagieren werden. Diese Unsicherheiten basieren unter anderem auf bislang fehlenden biogeographischen Untersuchungen, die globale und lokale Skalen kombinieren, und auf einem unzureichenden Verständnis dazu, ob und welche Umweltfaktoren speziell methanogene Gemeinschaften beeinflussen. Zudem gibt es trotz der Bedeutung von Projekten zur Moorwiedervernässung für das regionale und globale Treibhausgasbudget nahezu keine Untersuchungen zur Zusammensetzung und Verbreitung von methanogenen und methanotrophen Gemeinschaften in degradierten wiedervernäßten, eutrophen Niedermooren. Das Ziel dieser Doktorarbeit ist es, unser Verständnis zur Reaktion der am Methanbudget beteiligten mikrobiellen Gemeinschaften auf den globalen Wandel und auf die damit einhergehenden Umweltänderungen zu verbessern. Die Arbeit untersucht daher zum einen die biogeographischen Muster methanogener Gemeinschaften und die ihnen zugrunde liegenden Umweltfaktoren auf verschiedenen räumlichen Skalen. Auf globaler Ebene wurde eine Meta-Analyse durchgeführt, die auf 94 global verteilten, öffentlichen Sequenzdatensätzen sowie den dazugehörigen Umweltdaten aus verschiedenen natürlichen Ökosystemen basiert. Hierzu gehören Böden, Seesedimente, Ästuare, marine Sedimente, hydrothermale Sedimente und Schlammvulkane. In Kombination mit einer globalen biogeographischen Karte zur Verbreitung methanogener Archaeen konnte diese Arbeit zeigen, dass biogeographische Muster von Methanogenen existieren. Terrestrische Ökosysteme zeigen zudem eine höhere Diversität als marine Ökosysteme. Ästuare, Übergangszonen zwischen marinen und terrestrischen/ limnischen Ökosystemen, weisen die größte methanogene Diversität bei jedoch vergleichsweise geringen Methanemissionen auf. Methanoculleus und Methanosaeta (Methanothrix) sind die am häufigsten nachgewiesenen Taxa in marinen Lebensräumen, während Methanoregula in terrestrischen Ökosystemen dominiert. Auf lokaler Ebene wurden in dieser Arbeit zwei wiedervernässte, eutrophe Niedermoore im Nordosten Deutschlands verglichen, das von der Ostsee beeinflusste „Hütelmoor“ und das Durchströmungsmoor „Polder Zarnekow“. Beide Moore sind durch hohe Methanemissionen infolge der Wiedervernässung charakterisiert. Einhergehend mit unterschiedlichen geochemischen Bedingungen und unterschiedlicher Nutzungshistorie weisen diese beiden wiedervernässten Standorte in ihrer Zusammensetzung unterschiedliche methanogene und methanotrophe Gemeinschaften auf lokaler Ebene auf. Zudem ist die Gruppe der Methanotrophen innerhalb der prokaryotischen Gemeinschaften jeweils unterrepräsentiert und beide Moore zeigen ein vergleichbar niedriges Verhältnis von Methanotrophen im Vergleich zu Methanogenen. Diese Arbeit liefert erste Hinweise darauf, dass die schnelle und erfolgreiche Wiederbesiedlung durch Methanogene in Kombination mit einer offenbar schlecht etablierten methanotrophen Gemeinschaft zu den erhöhten Methanflüssen in beiden Mooren nach Wiedervernässung beiträgt. Abschließend zeigt diese Arbeit, dass eine eingeschränkte Migration („dispersal limitation“) die biogeographischen Verteilungsmuster von Methanogenen in natürlichen Ökosystemen kaum beeinflusst. Stattdessen werden Vorkommen und Anpassung von methanogenen Gemeinschaften vor allem durch den selektiven Druck verschiedener Umweltbedingungen reguliert. Die Umweltparameter Salzgehalt, pH-Wert und Temperatur wurden dabei als wichtigste Faktoren identifiziert, die die Verbreitung methanogener Gemeinschaften global bzw. speziell in terrestrischen Standorten beeinflussen. Es ist daher wahrscheinlich, dass prognostizierte Klimaveränderungen wie steigende Temperatur, Änderungen der Niederschlagsmuster und zunehmende Häufigkeit von Überschwemmungsereignissen zu Änderungen in der Zusammensetzung methanogener Gemeinschaften führen, die möglicherweise auch die Methanemissionsmuster beeinflussen werden. T2 - Verteilungsmuster Methan produzierender und Methan oxidierender Mikroorganismen und deren Abhängigkeit von Umweltfaktoren in natürlichen Ökosystemen und wiedervernäßten Mooren KW - biogeography KW - Biogeographie KW - methanogens KW - methanotrophs KW - Methanogene KW - Methanotrophe KW - distribution pattern KW - Verteilungsmuster KW - methane KW - Methane Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471770 ER - TY - THES A1 - Hoffmann, Mathias T1 - Improving measurement and modelling approaches of the closed chamber method to better assess dynamics and drivers of carbon based greenhouse gas emissions N2 - The trace gases CO2 and CH4 pertain to the most relevant greenhouse gases and are important exchange fluxes of the global carbon (C) cycle. Their atmospheric quantity increased significantly as a result of the intensification of anthropogenic activities, such as especially land-use and land-use change, since the mid of the 18th century. To mitigate global climate change and ensure food security, land-use systems need to be developed, which favor reduced trace gas emissions and a sustainable soil carbon management. This requires the accurate and precise quantification of the influence of land-use and land-use change on CO2 and CH4 emissions. A common method to determine the trace gas dynamics and C sink or source function of a particular ecosystem is the closed chamber method. This method is often used assuming that accuracy and precision are high enough to determine differences in C gas emissions for e.g., treatment comparisons or different ecosystem components. However, the broad range of different chamber designs, related operational procedures and data-processing strategies which are described in the scientific literature contribute to the overall uncertainty of closed chamber-based emission estimates. Hence, the outcomes of meta-analyses are limited, since these methodical differences hamper the comparability between studies. Thus, a standardization of closed chamber data acquisition and processing is much-needed. Within this thesis, a set of case studies were performed to: (I) develop standardized routines for an unbiased data acquisition and processing, with the aim of providing traceable, reproducible and comparable closed chamber based C emission estimates; (II) validate those routines by comparing C emissions derived using closed chambers with independent C emission estimates; and (III) reveal processes driving the spatio-temporal dynamics of C emissions by developing (data processing based) flux separation approaches. The case studies showed: (I) the importance to test chamber designs under field conditions for an appropriate sealing integrity and to ensure an unbiased flux measurement. Compared to the sealing integrity, the use of a pressure vent and fan was of minor importance, affecting mainly measurement precision; (II) that the developed standardized data processing routines proved to be a powerful and flexible tool to estimate C gas emissions and that this tool can be successfully applied on a broad range of flux data sets from very different ecosystem; (III) that automatic chamber measurements display temporal dynamics of CO2 and CH4 fluxes very well and most importantly, that they accurately detect small-scale spatial differences in the development of soil C when validated against repeated soil inventories; and (IV) that a simple algorithm to separate CH4 fluxes into ebullition and diffusion improves the identification of environmental drivers, which allows for an accurate gap-filling of measured CH4 fluxes. Overall, the proposed standardized data acquisition and processing routines strongly improved the detection accuracy and precision of source/sink patterns of gaseous C emissions. Hence, future studies, which consider the recommended improvements, will deliver valuable new data and insights to broaden our understanding of spatio-temporal C gas dynamics, their particular environmental drivers and underlying processes. N2 - Die Spurengase CO2 und CH4 gehören zu den wichtigsten atmosphärischen Treibhausgasen und sind zugleich wichtige Austauschflüsse im globalen Kohlenstoff-(C)-Kreislauf. Als Ergebnis zunehmender anthropogener Aktivitäten insbesondere auch im Bereich der Landnutzung und des Landnutzungswandel stiegen seit Mitte des 18 Jahrhunderts die atmosphärischen CO2 und CH4 Konzentrationen deutlich an. Um die zu erwartenden Auswirkungen des globalen Klimawandels abzuschwächen aber auch um die weltweite Ernährungssicherheit zu gewährleisten, bedarf es der Entwicklung neuer Landnutzungssysteme welche sich durch verminderte Treibhausgasemissionen und ein nachhaltiges Management der Bodenkohlenstoffvorrate auszeichnen. Dies erfordert die akkurate und präzise Quantifizierung des Einflusses von Landnutzung und Landnutzungswandel auf die CO2 und CH4 Emissionen. Eine gängige Methode zur Bestimmung von Spurengasemissionen und darauf aufbauend der C Senken bzw. Quellenfunktion verschiedenster Ökosysteme stellen Haubenmessungen dar. Unterschiedliche Haubendesigns, Messprozeduren und Strategien bei der Datenaufbereitung führen jedoch mitunter zu erheblichen Unsicherheiten bei den gemessenen C Emissionen. Dies kann die Aussagekraft von Metastudien maßgeblich beeinträchtigen, da die Vergleichbarkeit mittels geschlossener Hauben durchgeführter Untersuchungen nicht gewährleistet werden kann. Daher ist eine Standardisierung der Erfassung und Auswertung von Haubenmessungen dringend erforderlich. Im Rahmen dieser Arbeit wurden deshalb eine Reihe von Fallstudien durchgeführt um: (I) standardisierte Routinen zu entwickeln welche eine fehlerfreiere Datenerfassung und Bearbeitung von Haubenmessungen erlauben und so nachvollziehbare, reproduzierbare und vergleichbare C Emissionen liefern; (II) erarbeitete Routinen zu validieren indem auf geschlossenen Haubenmessungen basierende C Emissionen mit unabhängigen Daten verglichen werden; und (III) mittels entwickelter Separationsverfahren Teilflüsse präzise zu quantifizieren um Beziehungen zwischen CO2 und CH4 Flüssen und ihren Treibern besser analysieren zu können. Die durchgeführten Fallstudien zeigen: (I) die Notwendigkeit eingesetzte Hauben unter möglichst realistischen (Feld)-Bedingungen hinsichtlich ihrer Dichtigkeit (insbesondere an der Abdichtung zwischen Rahmen und Haube) zu überprüfen, da nur so fehlerfreie Messungen sichergestellt werden können; (II) das die entwickelten Routinen zur standardisierten Datenbearbeitung ein geeignetes flexibles Werkzeug darstellen um eine verlässliche Abschatzung gasförmige C Emissionen vorzunehmen; (III) das die zeitliche Dynamik von CO2 und CH4 Flüssen sowie kleinräumige Unterschiede in der Entwicklung von Bodenkohlenstoffvorraten gut mittels automatischer Haubenmesssysteme erfasst werden können (Validierung der Ergebnisse mittels wiederholter Bodeninventarisierung); und (IV) das ein einfacher Algorithmus zur Separation von CH4 in seine Flusskompartimente (blasenförmiger Massenfluss vs. Diffusion) die Identifizierung von Treibern verbessert und so ein akkurateres Füllen von Messlücken ermöglicht. Die in der Arbeit vorgestellten Routinen zur standardisierten Datenerfassung und Bearbeitung finden gegenwärtig national wie international Anwendung und helfen somit bei der Generierung vergleichbarer, akkurater und präziser Abschätzungen von standort-/ökosystemspezifischen C Emissionen. N2 - Следовые газы CO2 и CH4 относятся к наиболее значимым парниковым газам и являются важнейшими компонентами глобального углеродного (С) цикла. С середины XVIII столетия их атмосферная концентрация значительно увеличилась, в результате возросшей антропогенной деятельности, в особенности за счет такой сферы как землепользование и изменение землепользования. С целью смягчения последствий глобального изменения климата и обеспечения продовольственной безопасности, необходима разработка систем землепользования, которые будет способствовать сокращению эмиссии следовых газов и обеспечат устойчивое управление углеродными запасами почв. В свою очередь, это требует проведения аккуратной и точной количественной оценки воздействия землепользования и изменения землепользования на эмиссии CO2 и CH4. Стандартным способом для оценки динамики следовых газов и определения функции накопления или потери углерода экосистемой является метод закрытых камер. Данный метод часто используется с учетом предположения, что аккуратность и точность полученных результатов достаточно высоки, чтобы оценить разность между потоками углеродсодержащих газов. Например, при сравнении способов воздействия на экосистему либо для оценки углеродных потоков от ее компонентов. В научной литературе описано множество различных вариантов конструкций закрытых камер, связанных с ними операционных процедур и стратегий обработки данных. Это широкое разнообразие вносит свой вклад в общую неопределенность при оценке эмиссии парниковых газов методом закрытых камер. В результате, полученные на основе мета-анализа выводы обладают определенными ограничениями, т.к. методологические различия между разными исследованиями затрудняют сравнение их результатов. В связи с этим, необходимо проведение стандартизации сбора и обработки данных для методики закрытых камер. В рамках данных тезисов, был выполнен ряд тематических исследований с целью:(1) разработать для методики закрытых камер стандартизированные процедуры несмещенного сбора и обработки данных, которые позволят получить явно отслеживаемые, воспроизводимые и сопоставимые оценки углеродных потоков; (2) провести валидацию этих процедур, путем сравнения оценок потоков углерода, полученных методом закрытых камер с результатами оценки других независимых методов; (3) разработать, на основе анализа данных, способы для разделения углеродных потоков и установить процессы, регулирующие их пространственно-временную динамику. Результаты тематических исследований показали: (1) Важно проводить испытания конструкции камер на герметичность в полевых условиях и удостовериться, что измерения потоков углерода несмещенные. В сравнении с влиянием герметичности камеры, использование клапанов для выравнивания давления и вентиляторов имело несущественное значение и влияло только на точность измерений; (2) Было подтверждено, что разработанные стандартизированные методы обработки данных являются мощным и гибким инструментом оценки эмиссии углерода. На сегодняшний день эти методы успешно применяются на широком спектре разнообразных наборов данных углеродных потоков для различных типов экосистем; (3) Измерения, выполненные автоматическими закрытыми камерами, отчетливо демонстрируют временную динамику потоков CO2 и CH4 и, что наиболее важно, они хорошо выявляют мелкомасштабные пространственные различия в накоплении почвенного углерода, что было подтверждено с помощью повторяемой инвентаризации почвенных запасов углерода; (4) Простой алгоритм разделения эмиссии CH4 на потоки выбросов в виде диффузии газа и выделения в виде пузырей улучшает идентификацию экологических факторов, которые их регулируют, что позволяет более точно оценить эмиссии CH4 в периоды между измерениями. В целом предложенные стандартизированные методы сбора и обработки данных значительно увеличивают точность моделей выделения-поглощения газообразных углеродных эмиссий. Таким образом, будущие исследования, проведенные с учетом рекомендуемых усовершенствований, позволят получить новые ценные данные и гипотезы для расширения нашего понимания пространственно-временной динамики потоков углеродсодержащих газов, экологических факторов их регулирования и лежащих в их основе процессов. N2 - Le dioxyde de carbone (CO2) et le méthane (CH4) font partie des gaz à effet de serre les plus importants et sont également des éléments majeurs du cycle global du carbone. Depuis le milieu du XVIIIe siècle, leur quantité dans l’atmosphère a considérablement augmenté en raison de l'intensification des activités anthropiques, notamment l'exploitation des terres et la modification de l'utilisation de ces dernières. Afin d’atténuer les effets du changement climatique et d’assurer la sécurité alimentaire, il faut mettre au point des systèmes d’utilisation des terres qui favorisent la réduction des émissions de gaz à effet de serre ainsi qu’une gestion durable des stocks de carbone dans les sols. Cela exige une quantification exacte et précise de l'influence de l'utilisation des terres et de la modification de l'utilisation des sols sur les émissions de CO2 et de CH4. La méthode à chambre fermée est une méthode courante pour déterminer l’évolution des gaz présents à faible concentration atmosphérique et du puits de carbone, ou pour analyser la fonction primaire d'un écosystème singulier. Cette méthode est souvent utilisée en supposant que l’exactitude et la précision sont suffisamment élevées pour déterminer les différences dans les émissions de gaz à effet de serre, par exemple pour comparer les traitements ou les différentes composantes de l’écosystème. Toutefois, la vaste gamme de conceptions de chambres différentes, les procédures de mesure et les stratégies de traitement des données décrites dans la documentation scientifique contribuent à l’incertitude générale quant à l’analyse des émissions récoltées en chambre fermée. Par conséquent, les résultats des méta-analyses sont limités, car ces différences méthodologiques entravent la comparabilité des études. La standardisation de l’acquisition et du traitement des données en chambre fermée est donc indispensable. Dans le cadre de cette thèse, une série d'études de cas ont été réalisées pour: (I) élaborer des routines standardisées pour l'acquisition et le traitement de données impartiales, dans le but de fournir des estimations des émissions de carbone en chambre fermée traçables, reproductibles et comparables; (II) valider ces routines en comparant les émissions de carbone obtenues par la méthode des chambres fermées avec des estimations indépendantes des émissions de carbone; et (III) révéler les processus qui déterminent la dynamique spatio-temporelle des émissions de carbone en développant un processus de traitement de données basé sur l’approche de la séparation des flux. Les études de cas montrent: (I) l'importance de tester la conception des chambres dans des conditions de terrain pour une étanchéité appropriée et pour assurer une mesure impartiale des flux. Comparé à l'intégrité de l'étanchéité, l'utilisation d'une soupape de compensation de pression et d'un ventilateur était d'une importance mineure, affectant principalement la précision des mesures; (II) que les routines de traitement des données standardisées développées se sont avérées être un outil puissant et flexible pour estimer les émissions de carbone. L'outil est maintenant appliqué avec succès sur un large éventail de séries de données de flux provenant d'écosystèmes très différents; (III) que les mesures faites à l’aide de chambres automatiques montrent très bien la dynamique temporelle des flux CO2 et de CH4 et, surtout, qu'elles détectent avec précision les différences spatiales à petite échelle dans le développement des réserves de carbone dans le sol lorsqu'elles sont validées par des inventaires périodiques du sol; et (IV) qu’un algorithme simple pour séparer les flux de CH4 en ébullition et en diffusion améliore l'identification de facteurs environnementaux, ce qui permet de combler avec précision les données manquantes des flux de CH4 mesurés. Dans l'ensemble, les routines standardisées proposées pour l'acquisition et le traitement des données ont grandement amélioré l'exactitude de la détection des profils source/évier des émissions de carbone gazeux. Par conséquent, les études futures, qui tiennent compte des améliorations recommandées, fourniront de nouvelles données et de nouvelles perspectives précieuses pour élargir notre compréhension de la dynamique spatio-temporelle du gaz carbone, de ses moteurs environnementaux spécifiques et des processus sous-jacents. N2 - Los gases traza CO2 y CH4 pertenecen a los gases de efecto invernadero más importantes del ciclo global del carbono (C). Su concentración en la atmósfera se ha incrementado significativamente desde mediados del siglo XVIII como resultado de la intensificación de las actividades antropogénicas, como el uso del suelo y el cambio en los usos de la tierra. Para mitigar el cambio climático global y garantizar la seguridad alimentaria es necesario desarrollar sistemas de uso del suelo que favorezcan la reducción de emisiones de gases de efecto invernadero y una gestión sostenible del carbono en el suelo. Esto requiere un cálculo exacto y preciso de la influencia del uso del suelo y de los cambios en el uso del suelo en las emisiones de CO2 y CH4. Un método común para determinar las dinámicas del gas traza y la función de fuente o sumidero de C de un ecosistema es el método de las cámaras cerradas. Este método se utiliza comúnmente asumiendo que la exactitud y precisión son lo suficientemente elevadas para determinar las diferencias en la emisiones de gases C, por ejemplo, comparaciones de tratamientos o de los diferentes componentes del ecosistema. Sin embargo, la amplia gama de diseños de cámaras, los procedimientos operativos relacionados y las estrategias de procesamiento de datos descritas en la literatura científica contribuyen a la incertidumbre general de las estimaciones de emisiones basadas en cámaras cerradas. Además, los resultados de los metanálisis son limitados, ya que estas diferencias metodológicas dificultan la comparabilidad entre los estudios. Por lo tanto, la estandarización en la obtención y procesamiento de datos en el método de la cámara cerrada es muy necesaria. En esta tesis se desarrollan un conjunto de casos de estudio para: (I) Desarrollar rutinas estandarizadas para una obtención y procesamiento de datos imparcial, con el objetivo de proporcionar estimaciones de emisiones de C basadas en cámaras cerradas trazables, reproducibles y comparables; (II) Validar esas rutinas comparando las emisiones de C derivadas del método de las cámaras cerradas con estimaciones independientes de emisiones de C; y (III) revelar procesos que impulsan la dinámica espacio temporal de las emisiones de C, a través del desarrollo de un proceso de tratamiento de datos basado en el enfoque de la separación de flujos. Los casos de estudio muestran: (I) La importancia de someter a prueba el diseño de las cámaras a las condiciones de campo para una apropiada integridad del sellado y para garantizar una medición de flujo imparcial. Comparado con la integridad del sellado, el uso de la ventilación a presión y del ventilador resultó de menor importancia, afectando principalmente a la precisión de las mediciones. (II) que las rutinas estandarizadas desarrolladas para el procesamiento de datos demostraron ser una herramienta poderosa y flexible para estimar las emisiones de gases de C. La herramienta ahora se aplica con éxito en una amplia gama de conjuntos de datos de flujo de ecosistemas muy diferentes; (III) que las mediciones con cámaras automáticas muestran claramente la dinámica temporal de las emisiones de CO2 y lo más importante, que detectan con precisión diferencias espaciales a pequeña escala en el desarrollo del C en el suelo cuando se validan con inventarios periódicos del suelo ; y (IV) que un simple algoritmo para separar flujos de CH4 entre ebullición y difusión mejora la identificación de los impulsores ambientales, lo cual permite un procedimiento más exacto para el relleno del vacío de datos de las mediciones de los flujos de CH4. En términos generales puede decirse que los algoritmos de obtención y procesamiento de datos estandarizados propuestos mejoraron en gran medida la precisión de detección de los patrones fuente / sumidero de emisiones de C gaseoso. Por lo tanto, los futuros estudios, que consideren las mejoras recomendadas, ofrecerán nuevos datos y conocimientos útiles para ampliar nuestra comprensión de la dinámica espacio-temporal del C de los gases, sus impulsores ambientales específicos y los procesos subyacentes. T2 - Verbesserung von Mess- und Modellierungsansätzen der geschlossenen Haubenmessmethode zur besseren Erfassung von raumzeitlichen Veränderungen und potentiellen Treibern kohlenstoffbasierter Treibhausgasemissionen KW - greenhouse gases KW - closed chamber method KW - carbon dioxide KW - methane KW - Kohlenstoffdioxid KW - geschlossene Haubenmessmethode KW - Treibhausgase KW - Methan Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-421302 ER - TY - GEN A1 - Kühn, Michael A1 - Li, Qi A1 - Nakaten, Natalie Christine A1 - Kempka, Thomas T1 - Integrated subsurface gas storage of CO2 and CH4 offers capacity and state-of-the-art technology for energy storage in China T2 - Energy procedia N2 - Integration and development of the energy supply in China and worldwide is a challenge for the years to come. The innovative idea presented here is based on an extension of the “power-to-gas-to-power” technology by establishing a closed carbon cycle. It is an implementation of a low-carbon energy system based on carbon dioxide capture and storage (CCS) to store and reuse wind and solar energy. The Chenjiacun storage project in China compares well with the German case study for the towns Potsdam and Brandenburg/Havel in the Federal State of Brandenburg based on the Ketzin pilot site for CCS. KW - gas storage KW - carbon dioxide KW - methane KW - hydrogen KW - renewable energy KW - carbon cycle Y1 - 2017 U6 - https://doi.org/10.1016/j.egypro.2017.08.039 SN - 1876-6102 VL - 125 SP - 14 EP - 18 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Frank-Fahle, Béatrice A. T1 - Methane-cycling microbial communities in permafrost affected soils on Herschel Island and the Yukon Coast, Western Canadian Arctic T1 - Mikrobielle Gemeinschaften des Methankreislaufs in Permafrost beeinflussten Böden auf der Insel Herschel und an der Yukon-Küste, westliche kanadische Arktis N2 - Permafrost-affected ecosystems including peat wetlands are among the most obvious regions in which current microbial controls on organic matter decomposition are likely to change as a result of global warming. Wet tundra ecosystems in particular are ideal sites for increased methane production because of the waterlogged, anoxic conditions that prevail in seasonally increasing thawed layers. The following doctoral research project focused on investigating the abundance and distribution of the methane-cycling microbial communities in four different polygons on Herschel Island and the Yukon Coast. Despite the relevance of the Canadian Western Arctic in the global methane budget, the permafrost microbial communities there have thus far remained insufficiently characterized. Through the study of methanogenic and methanotrophic microbial communities involved in the decomposition of permafrost organic matter and their potential reaction to rising environmental temperatures, the overarching goal of the ensuing thesis is to fill the current gap in understanding the fate of the organic carbon currently stored in Artic environments and its implications regarding the methane cycle in permafrost environments. To attain this goal, a multiproxy approach including community fingerprinting analysis, cloning, quantitative PCR and next generation sequencing was used to describe the bacterial and archaeal community present in the active layer of four polygons and to scrutinize the diversity and distribution of methane-cycling microorganisms at different depths. These methods were combined with soil properties analyses in order to identify the main physico-chemical variables shaping these communities. In addition a climate warming simulation experiment was carried-out on intact active layer cores retrieved from Herschel Island in order to investigate the changes in the methane-cycling communities associated with an increase in soil temperature and to help better predict future methane-fluxes from polygonal wet tundra environments in the context of climate change. Results showed that the microbial community found in the water-saturated and carbon-rich polygons on Herschel Island and the Yukon Coast was diverse and showed a similar distribution with depth in all four polygons sampled. Specifically, the methanogenic community identified resembled the communities found in other similar Arctic study sites and showed comparable potential methane production rates, whereas the methane oxidizing bacterial community differed from what has been found so far, being dominated by type-II rather than type-I methanotrophs. After being subjected to strong increases in soil temperature, the active-layer microbial community demonstrated the ability to quickly adapt and as a result shifts in community composition could be observed. These results contribute to the understanding of carbon dynamics in Arctic permafrost regions and allow an assessment of the potential impact of climate change on methane-cycling microbial communities. This thesis constitutes the first in-depth study of methane-cycling communities in the Canadian Western Arctic, striving to advance our understanding of these communities in degrading permafrost environments by establishing an important new observatory in the Circum-Arctic. N2 - Permafrost beeinflusste Ökosysteme gehören zu den Regionen, in denen als Folge der globalen Erwärmung eine Veränderung des mikrobiell-kontrollierten Abbaus von organischem Material zu erwarten ist. Besonders in den Ökosystemen der feuchten Tundralandschaften kommt es zu einer verstärkten Methanpoduktion unter wassergesättigten und anoxischen Bedingungen, die durch immer tiefere saisonale Auftauschichten begünstigt werden. Die vorliegende Doktorarbeit kontenzentrierte sich auf die Untersuchung der Abundanz und Verteilung der am Methankreislauf beteiligten mikrobiellen Gemeinschaften in vier unterschiedlichen Polygonen auf der Insel Herschel und an der Yukon Küste in Kanada. Trotz des relevanten Beitrags der kanadischen West-Arktis am globalen Methanhaushalt, sind die dortigen mikrobiellen Gemeinschaften im Permafrost bisher nur unzureichend untersucht worden. Die zentrale Zielstellung der vorliegenden Arbeit besteht darin, die derzeitige Lücke im Verständnis der Kohlenstoffdynamik in der Arktis im Zuge von Klimaveränderungen und deren Bedeutung für den Methankreislauf in Permafrost-Ökosystemen zu schließen. Dies erfolgt durch Untersuchungen der am Abbau der organischen Substanz im Permafrost beteiligten methonogenen und methanothrophen mikrobiellen Gemeinschaften und ihrer möglichen Reaktionen auf steigende Umgebungstemperaturen. Um dieses Ziel zu erreichen, wurde ein Multiproxy-Ansatz gewählt, der die Analyse der Gemeinschaften mittels genetischen Fingerprintmethoden, Klonierung, quantitativer PCR und moderner Hochdurchsatzsequenzierung („Next Generation Sequencing“) beinhaltet, um die in der Auftauschicht der vier untersuchten Polygone vorhandenen Bakterien- und Archaeen-Gemeinschaften zu charakterisieren sowie die Diversität und Verteilung der am Methankreislauf beteiligten Mikroorganismen in unterschiedlicher Tiefe eingehend zu analysieren. Diese Studien wurden mit physikalisch-chemischen Habitatuntersuchungen kombiniert, da diese die mikrobiellen Lebensgemeinschaften maßgeblich beeinflussen. Zusätzlich wurde ein Laborexperiment zur Simulation der Klimaerwärmung an intakten Bodenmonolithen von der Insel Herschel durchgeführt, um die Veränderungen der am Methankreislauf beteiligten Gemeinschaften aufgrund steigender Bodentemperaturen zu untersuchen, sowie sicherere Voraussagen bezüglich der Methanfreisetzung in polygonalen Permafrostgebieten im Zusammenhang mit dem Klimawandel treffen zu können. KW - Permafrost KW - Mikrobiologie KW - Methan KW - Kohlenstoff KW - Arktis KW - Permafrost KW - microbiology KW - methane KW - carbon KW - Arctic Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-65345 ER - TY - THES A1 - Holm, Stine T1 - Methanogenic communities and metaplasmidome-encoded functions in permafrost environments exposed to thaw N2 - This thesis investigates how the permafrost microbiota responds to global warming. In detail, the constraints behind methane production in thawing permafrost were linked to methanogenic activity, abundance and composition. Furthermore, this thesis offers new insights into microbial adaptions to the changing environmental conditions during global warming. This was assesed by investigating the potential ecological relevant functions encoded by plasmid DNA within the permafrost microbiota. Permafrost of both interglacial and glacial origin spanning the Holocene to the late Pleistocene, including Eemian, were studied during long-term thaw incubations. Furthermore, several permafrost cores of different stratigraphy, soil type and vegetation cover were used to target the main constraints behind methane production during short-term thaw simulations. Short- and long-term incubations simulating thaw with and without the addition of substrate were combined with activity measurements, amplicon and metagenomic sequencing of permanently frozen and seasonally thawed active layer. Combined, it allowed to address the following questions. i) What constraints methane production when permafrost thaws and how is this linked to methanogenic activity, abundance and composition? ii) How does the methanogenic community composition change during long-term thawing conditions? iii) Which potential ecological relevant functions are encoded by plasmid DNA in active layer soils? The major outcomes of this thesis are as follows. i) Methane production from permafrost after long-term thaw simulation was found to be constrained mainly by the abundance of methanogens and the archaeal community composition. Deposits formed during periods of warmer temperatures and increased precipitation, (here represented by deposits from the Late Pleistocene of both interstadial and interglacial periods) were found to respond strongest to thawing conditions and to contain an archaeal community dominated by methanogenic archaea (40% and 100% of all detected archaea). Methanogenic population size and carbon density were identified as main predictors for potential methane production in thawing permafrost in short-term incubations when substrate was sufficiently available. ii) Besides determining the methanogenic activity after long-term thaw, the paleoenvironmental conditions were also found to influence the response of the methanogenic community composition. Substantial shifts within methanogenic community structure and a drop in diversity were observed in deposits formed during warmer periods, but not in deposits from stadials, when colder and drier conditions occurred. Overall, a shift towards a dominance of hydrogenotrophic methanogens was observed in all samples, except for the oldest interglacial deposits from the Eemian, which displayed a potential dominance of acetoclastic methanogens. The Eemian, which is discussed to serve as an analogue to current climate conditions, contained highly active methanogenic communities. However, all potential limitation of methane production after permafrost thaw, it means methanogenic community structure, methanogenic population size, and substrate pool might be overcome after permafrost had thawed on the long-term. iii) Enrichments with soil from the seasonally thawed active layer revealed that its plasmid DNA (‘metaplasmidome’) carries stress-response genes. In particular it encoded antibiotic resistance genes, heavy metal resistance genes, cold shock proteins and genes encoding UV-protection. Those are functions that are directly involved in the adaptation of microbial communities to stresses in polar environments. It was further found that metaplasmidomes from the Siberian active layer originate mainly from Gammaproteobacteria. By applying enrichment cultures followed by plasmid DNA extraction it was possible to obtain a higher average contigs length and significantly higher recovery of plasmid sequences than from extracting plasmid sequences from metagenomes. The approach of analyzing ‘metaplasmidomes’ established in this thesis is therefore suitable for studying the ecological role of plasmids in polar environments in general. This thesis emphasizes that including microbial community dynamics have the potential to improve permafrost-carbon projections. Microbially mediated methane release from permafrost environments may significantly impact future climate change. This thesis identified drivers of methanogenic composition, abundance and activity in thawing permafrost landscapes. Finally, this thesis underlines the importance to study how the current warming Arctic affects microbial communities in order to gain more insight into microbial response and adaptation strategies. N2 - Diese Dissertation untersucht die Reaktion der Permafrost-Mikrobiota auf die globale Erwärmung. Im Detail wurden mögliche Faktoren, die die Methanproduktion in tauendem Permafrost einschränken, im Zusammenhang methanogener Aktivität, Abundanz und Gemeinschaftszusammensetzung untersucht. Darüber hinaus bietet diese Dissertation neue Einblicke in mikrobielle Anpassungen an die sich ändernden Umweltbedingungen während der globalen Erwärmung. Dies wurde durch Untersuchung der potenziell ökologisch relevanten Funktionen bewertet, die von Plasmid-DNA innerhalb der Permafrost-Mikrobiota codiert werden. Permafrost, der seinen Ursprung in den Interglazialen und Glazialen aus dem Holozän bis zum späten Pleistozän, einschließlich des Eem, hat, wurde in Langzeit-Tau-Inkubationen untersucht. Darüber hinaus wurden mehrere Permafrostkerne mit unterschiedlicher Stratigraphie, Vegetationsbedeckung und unterschiedlichem Bodentyp verwendet, um die Faktoren, die die Methanproduktion während kurzfristiger Auftausimulationen bestimmen, zu ermitteln. Kurz- und Langzeitinkubationen, die das Auftauen mit und ohne Zugabe von Substrat in Kombination mit Aktivitätsmessungen, Amplikon- und Metagenom-Sequenzierung von permanent gefrorenem und saisonal aufgetautem Boden simulieren, ermöglichten die Beantwortung folgender Fragen: i) Welche Faktoren hemmen die Methanproduktion beim Auftauen des Permafrosts und wie hängt dies mit der Aktivität, Abundanz und Zusammensetzung methanogener Organismen zusammen? ii) Wie verändert sich die Gemeinschaftszusammensetzung methanogener Organismen unter langfristigen Auftaubedingungen? iii) Welche potenziell ökologisch relevanten Funktionen werden von Plasmid-DNA in saisonal getauten Böden kodiert? Die wichtigsten Ergebnisse dieser Arbeit können wie folgt zusammengefasst werden. i) Die Methanproduktion in langfristig getautem Permafrost wird hauptsächlich durch die Anzahl der methanogenen Archaeen und ihrem Anteil innerhalb der Archaeen bestimmt. Ablagerungen, die in wärmeren Perioden mit erhöhtem Niederschlag gebildet wurden, reagierten am stärksten auf das Tauen und enthielten eine von Methanogenen dominierte Archaeen-Gemeinschaft. In Kurzzeitinkubationen mit ausreichender Verfügbarkeit von Substrat wurden die Populationsgröße der methanogenen Organismen und die Kohlenstoffdichte als Hauptprädiktoren für die potenzielle Methanproduktion beim Auftauen von Permafrost identifiziert. ii) Auch die paläoökologischen Bedingungen beeinflussen die Reaktion der methanogenen Gemeinschaft und Aktivität, wenn Permafrost taut. Es wurden erhebliche Verschiebungen innerhalb der Gemeinschaftsstruktur und ein Rückgang der Diversität in Ablagerungen beobachtet, die in wärmeren Perioden gebildet wurden, jedoch nicht bei Ablagerungen aus kälteren und trockeneren Perioden. Insgesamt wurde in allen Proben eine Verschiebung hin zu einer Dominanz von hydrogenotrophen Methanogenen beobachtet, mit Ausnahme der ältesten interglazialen Ablagerungen aus dem Eem, die eine potenzielle Dominanz von acetoklastischen Methanogenen aufwiesen. Das Eem, das als Analogon zu den aktuellen Klimabedingungen diskutiert wird, enthielt hochaktive methanogene Gemeinschaften. iii) Anreicherungen aus Boden der saisonalen Auftauschicht zeigten, dass die enthaltene Plasmid-DNA („Metaplasmidom“) Stress-Reaktions-Gene trägt. Insbesondere codierte die Plasmid-DNA Antibiotikaresistenzgene, Schwermetallresistenzgene, Kälteschock-proteine und Gene, für den UV-Schutz, also Funktionen, die direkt an der Anpassung mikrobieller Gemeinschaften an Stress in polaren Umgebungen beteiligt sind. Weiterhin stammten die Metaplasmidome der saisonalen Auftauschicht Sibiriens hauptsächlich von Gammaproteobakterien. Durch die Anreicherung von Kulturen, gefolgt von einer Extraktion der Plasmid-DNA, war es möglich, eine höhere durchschnittliche Contig-Länge und eine signifikant höhere Wiederherstellung von Plasmidsequenzen zu erhalten als durch Extrahieren von Plasmidsequenzen aus Metagenomen. Der in dieser Arbeit etablierte Ansatz zur Analyse von „Metaplasmidomen“ ist ein geeigneter Ansatz zur Untersuchung der ökologischen Rolle von Plasmiden in polaren Regionen insgesamt. Diese Dissertation hebt hervor, wie wichtig es ist, die Abundanz, Zusammensetzung und Funktionen der mikrobiellen Gemeinschaft in Permafrost-Kohlenstoff-Projektionen einzubeziehen, und zwar nicht nur, da die mikrobiell vermittelte Methanfreisetzung aus Permafrostablagerungen das Potenzial hat, den zukünftigen Klimawandel erheblich zu beeinflussen. Vielmehr wurden in dieser Arbeit Abhängigkeiten methanogener Gemeinschaftsstrukturen, Abundanz und Aktivität identifiziert. Abschließend verdeutlicht diese Arbeit, wie wichtig es ist zu untersuchen, wie sich die derzeitige Erwärmung der Arktis auf mikrobielle Gemeinschaften auswirkt, um Einblicke in mikrobielle Reaktions- und Anpassungsstrategien zu erhalten. KW - methanogenic archaea KW - methane KW - glacial and interglacial permafrost KW - Permafrost carbon feedback KW - carbon density KW - Siberia KW - Herschel Island Qikiqtaruk KW - active layer KW - plasmidome KW - stress-tolerance genes Y1 - 2020 ER - TY - JOUR A1 - Li, Zhen A1 - Spangenberg, Erik A1 - Schicks, Judith Maria A1 - Kempka, Thomas T1 - Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic JF - Energies N2 - The Mackenzie Delta (MD) is a permafrost-bearing region along the coasts of the Canadian Arctic which exhibits high sub-permafrost gas hydrate (GH) reserves. The GH occurring at the Mallik site in the MD is dominated by thermogenic methane (CH4), which migrated from deep conventional hydrocarbon reservoirs, very likely through the present fault systems. Therefore, it is assumed that fluid flow transports dissolved CH4 upward and out of the deeper overpressurized reservoirs via the existing polygonal fault system and then forms the GH accumulations in the Kugmallit-Mackenzie Bay Sequences. We investigate the feasibility of this mechanism with a thermo-hydraulic-chemical numerical model, representing a cross section of the Mallik site. We present the first simulations that consider permafrost formation and thawing, as well as the formation of GH accumulations sourced from the upward migrating CH4-rich formation fluid. The simulation results show that temperature distribution, as well as the thickness and base of the ice-bearing permafrost are consistent with corresponding field observations. The primary driver for the spatial GH distribution is the permeability of the host sediments. Thus, the hypothesis on GH formation by dissolved CH4 originating from deeper geological reservoirs is successfully validated. Furthermore, our results demonstrate that the permafrost has been substantially heated to 0.8-1.3 degrees C, triggered by the global temperature increase of about 0.44 degrees C and further enhanced by the Arctic Amplification effect at the Mallik site from the early 1970s to the mid-2000s. KW - gas hydrate KW - permafrost KW - methane KW - faults KW - climate change KW - Mallik KW - numerical simulations Y1 - 2022 U6 - https://doi.org/10.3390/en15144986 SN - 1996-1073 VL - 15 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Treat, Claire C. A1 - Kleinen, Thomas A1 - Broothaerts, Nils A1 - Dalton, April S. A1 - Dommain, Rene A1 - Douglas, Thomas A. A1 - Drexler, Judith Z. A1 - Finkelstein, Sarah A. A1 - Grosse, Guido A1 - Hope, Geoffrey A1 - Hutchings, Jack A1 - Jones, Miriam C. A1 - Kuhry, Peter A1 - Lacourse, Terri A1 - Lahteenoja, Outi A1 - Loisel, Julie A1 - Notebaert, Bastiaan A1 - Payne, Richard J. A1 - Peteet, Dorothy M. A1 - Sannel, A. Britta K. A1 - Stelling, Jonathan M. A1 - Strauss, Jens A1 - Swindles, Graeme T. A1 - Talbot, Julie A1 - Tarnocai, Charles A1 - Verstraeten, Gert A1 - Williams, Christopher J. A1 - Xia, Zhengyu A1 - Yu, Zicheng A1 - Valiranta, Minna A1 - Hattestrand, Martina A1 - Alexanderson, Helena A1 - Brovkin, Victor T1 - Widespread global peatland establishment and persistence over the last 130,000 y JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (> 40 degrees N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene. KW - peatlands KW - carbon KW - methane KW - carbon burial KW - Quaternary Y1 - 2019 U6 - https://doi.org/10.1073/pnas.1813305116 SN - 0027-8424 VL - 116 IS - 11 SP - 4822 EP - 4827 PB - National Acad. of Sciences CY - Washington ER -