TY - JOUR A1 - Heck, Christian A1 - Kanehira, Yuya A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures JF - Molecules N2 - Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates. KW - amorphous carbon KW - DNA origami KW - SERS KW - nanoparticle dimers KW - nanolenses Y1 - 2019 U6 - https://doi.org/10.3390/molecules24122324 SN - 1420-3049 VL - 24 IS - 12 PB - MDPI CY - Basel ER - TY - GEN A1 - Heck, Christian A1 - Kanehira, Yuya A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures T2 - Mathematisch-Naturwissenschaftliche Reihe N2 - Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 732 KW - amorphous carbon KW - DNA origami KW - SERS KW - nanoparticle dimers KW - nanolenses Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430812 SN - 1866-8372 IS - 732 ER - TY - JOUR A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Sander, Mathias A1 - Koopman, Wouter-Willem Adriaan A1 - Schuetz, Roman A1 - Bargheer, Matias A1 - Koetz, Joachim T1 - Deposition of Gold Nanotriangles in Large Scale Close-Packed Monolayers for X-ray-Based Temperature Calibration and SERS Monitoring of Plasmon-Driven Catalytic Reactions JF - ACS applied materials & interfaces KW - gold nanotriangles KW - monolayer formation KW - SERS KW - dimerization KW - heat measurement Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b07231 SN - 1944-8244 VL - 9 SP - 20247 EP - 20253 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Mostafa, Amr T1 - DNA origami nanoforks: A platform for cytochrome c single molecule surface enhanced Raman spectroscopy N2 - This thesis presents a comprehensive exploration of the application of DNA origami nanofork antennas (DONAs) in the field of spectroscopy, with a particular focus on the structural analysis of Cytochrome C (CytC) at the single-molecule level. The research encapsulates the design, optimization, and application of DONAs in enhancing the sensitivity and specificity of Raman spectroscopy, thereby offering new insights into protein structures and interactions. The initial phase of the study involved the meticulous optimization of DNA origami structures. This process was pivotal in developing nanoscale tools that could significantly enhance the capabilities of Raman spectroscopy. The optimized DNA origami nanoforks, in both dimer and aggregate forms, demonstrated an enhanced ability to detect and analyze molecular vibrations, contributing to a more nuanced understanding of protein dynamics. A key aspect of this research was the comparative analysis between the dimer and aggregate forms of DONAs. This comparison revealed that while both configurations effectively identified oxidation and spin states of CytC, the aggregate form offered a broader range of detectable molecular states due to its prolonged signal emission and increased number of molecules. This extended duration of signal emission in the aggregates was attributed to the collective hotspot area, enhancing overall signal stability and sensitivity. Furthermore, the study delved into the analysis of the Amide III band using the DONA system. Observations included a transient shift in the Amide III band's frequency, suggesting dynamic alterations in the secondary structure of CytC. These shifts, indicative of transitions between different protein structures, were crucial in understanding the protein’s functional mechanisms and interactions. The research presented in this thesis not only contributes significantly to the field of spectroscopy but also illustrates the potential of interdisciplinary approaches in biosensing. The use of DNA origami-based systems in spectroscopy has opened new avenues for research, offering a detailed and comprehensive understanding of protein structures and interactions. The insights gained from this research are expected to have lasting implications in scientific fields ranging from drug development to the study of complex biochemical pathways. This thesis thus stands as a testament to the power of integrating nanotechnology, biochemistry, and spectroscopic techniques in addressing complex scientific questions. N2 - Diese Dissertation präsentiert eine umfassende Untersuchung der Anwendung von DNA-Origami-Nanogabelantennen (DONAs) im Bereich der Spektroskopie, mit einem besonderen Fokus auf der strukturellen Analyse von Cytochrom C (CytC) auf Einzelmolekülebene. Die Forschung umfasst das Design, die Optimierung und die Anwendung von DONAs zur Steigerung der Sensitivität und Spezifität der Raman-Spektroskopie und bietet somit neue Einblicke in Proteinstrukturen und -interaktionen. Die erste Phase der Studie beinhaltete die sorgfältige Optimierung von DNA-Origami-Strukturen. Dieser Prozess war entscheidend für die Entwicklung von Nanowerkzeugen, die die Fähigkeiten der Raman-Spektroskopie erheblich verbessern könnten. Die optimierten DNA-Origami-Nanogabeln, sowohl in Dimer- als auch in Aggregatform, zeigten eine verbesserte Fähigkeit, molekulare Schwingungen zu detektieren und zu analysieren, was zu einem nuancierteren Verständnis der Proteindynamik beitrug. Ein Schlüsselaspekt dieser Forschung war die vergleichende Analyse zwischen den Dimer- und Aggregatformen von DONAs. Dieser Vergleich zeigte, dass beide Konfigurationen effektiv Oxidations- und Spin-Zustände von CytC identifizieren konnten, wobei die Aggregatform aufgrund ihrer längeren Signalemission und der erhöhten Anzahl von Molekülen ein breiteres Spektrum an detektierbaren molekularen Zuständen bot. Die verlängerte Dauer der Signalemission in den Aggregaten wurde auf den kollektiven Hotspot-Bereich zurückgeführt, der die Gesamtsignalstabilität und -empfindlichkeit erhöhte. Darüber hinaus ging die Studie auf die Analyse der Amid-III-Bande unter Verwendung des DONA-Systems ein. Zu den Beobachtungen gehörte eine vorübergehende Verschiebung der Frequenz der Amid-III-Bande, was auf dynamische Veränderungen in der Sekundärstruktur von CytC hindeutete. Diese Verschiebungen, die auf Übergänge zwischen verschiedenen Proteinstrukturen hindeuteten, waren entscheidend für das Verständnis der funktionellen Mechanismen und Interaktionen des Proteins. Die in dieser Dissertation präsentierte Forschung leistet nicht nur einen bedeutenden Beitrag zum Gebiet der Spektroskopie, sondern veranschaulicht auch das Potenzial interdisziplinärer Ansätze in der Biosensorik. Der Einsatz von DNA-Origami-basierten Systemen in der Spektroskopie hat neue Wege für die Forschung eröffnet und bietet ein detailliertes und umfassendes Verständnis von Proteinstrukturen und -interaktionen. Die aus dieser Forschung gewonnenen Erkenntnisse werden voraussichtlich langfristige Auswirkungen auf wissenschaftliche Bereiche haben, die von der Arzneimittelentwicklung bis hin zur Untersuchung komplexer biochemischer Prozesse reichen. Diese Dissertation steht somit als Zeugnis für die Kraft der Integration von Nanotechnologie, Biochemie und spektroskopischen Techniken bei der Beantwortung komplexer wissenschaftlicher Fragen. KW - DNA origami KW - DNA origami nanoantennas (DONA) KW - SERS KW - Cytochrome C Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-635482 ER - TY - JOUR A1 - Balderas-Valadez, Ruth Fabiola A1 - Estevez-Espinoza, J. O. A1 - Salazar-Kuri, U. A1 - Pacholski, Claudia A1 - Mochan, Wolf Luis A1 - Agarwal, Vivechana T1 - Fabrication of ordered tubular porous silicon structures by colloidal lithography and metal assisted chemical etching BT - SERS performance of 2D porous silicon structures JF - Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces N2 - Fabrication of well-ordered porous silicon tubular structures using colloidal lithography and metal assisted chemical etching is reported. A continuous hexagonal hole/particle gold pattern was designed over monocrystalline silicon through deposition of polyNIPAM microspheres, followed by the surface decoration with gold nanoparticles and thermal treatment. An etching reaction with HF, ethanol and H2O2 dissolved the silicon in contact with the metal nanoparticles (NP), creating a porous tubular array in the "off-metal area". The morphological characterization revealed the formation of a cylindrical hollow porous tubular shape with external and internal diameter of approx. 900 nm and 400 nm respectively, though it can be tuned to other desired sizes by choosing an appropriate dimension for the microspheres. The porous morphology and optical properties were studied as a function of resistivity of silicon substrates. Compared to two different gold templates on cSi and nontubular porous pillar structures, porous silicon tubular framework revealed a maximum surface enhanced Raman scattering enhancement factor of 10(6) for the detection of 6-mercaptopurine (6-MP). Due to the large surface area available for any surface modification, open nanostructured platforms such as those studied here have potential applications in the field of reflection/photoluminescene and SERS based optical bio-/chemical sensors. KW - SERS KW - Porous silicon KW - MACE KW - Colloidal lithography KW - PolyNIPAM KW - 6-Mercaptopurine Y1 - 2018 U6 - https://doi.org/10.1016/j.apsusc.2018.08.120 SN - 0169-4332 SN - 1873-5584 VL - 462 SP - 783 EP - 790 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Heck, Christian T1 - Gold and silver nanolenses self-assembled by DNA origami T1 - Gold- und Silbernanolinsen, selbstassembliert durch DNA-Origami N2 - Nanolenses are linear chains of differently-sized metal nanoparticles, which can theoretically provide extremely high field enhancements. The complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, the technique of DNA origami was used to self-assemble DNA-coated 10 nm, 20 nm, and 60 nm gold or silver nanoparticles into gold or silver nanolenses. Three different geometrical arrangements of gold nanolenses were assembled, and for each of the three, sets of single gold nanolenses were investigated in detail by atomic force microscopy, scanning electron microscopy, dark-field scattering and Raman spectroscopy. The surface-enhanced Raman scattering (SERS) capabilities of the single nanolenses were assessed by labelling the 10 nm gold nanoparticle selectively with dye molecules. The experimental data was complemented by finite-difference time-domain simulations. For those gold nanolenses which showed the strongest field enhancement, SERS signals from the two different internal gaps were compared by selectively placing probe dyes on the 20 nm or 60 nm gold particles. The highest enhancement was found for the gap between the 20 nm and 10 nm nanoparticle, which is indicative of a cascaded field enhancement. The protein streptavidin was labelled with alkyne groups and served as a biological model analyte, bound between the 20 nm and 10 nm particle of silver nanolenses. Thereby, a SERS signal from a single streptavidin could be detected. Background peaks observed in SERS measurements on single silver nanolenses could be attributed to amorphous carbon. It was shown that the amorphous carbon is generated in situ. N2 - Nanolinsen sind Strukturen aus linear angeordneten, unterschiedlich großen metallischen Nanopartikeln. Elektromagnetische Felder können durch sie theoretisch extrem verstärkt werden, aufgrund ihres komplexen Aufbaus sind sie bislang aber wenig erforscht. Im Rahmen dieser Dissertation wurden Nanolinsen mit Hilfe der DNA-Origami-Technik aus DNA-beschichteten 10 nm-, 20 nm- und 60 nm-Gold- oder Silbernanopartikeln hergestellt. Für Goldnanolinsen sind die Partikel dabei in drei unterschiedlichen Geometrien angeordnet worden. Einzelne Goldnanolinsen wurden mittels Rasterkraftmikroskopie, Rasterelektronenmikroskopie, Dunkelfeld- und Ramanspektroskopie untersucht. Um die Raman-Verstärkung quantifizieren zu können, trugen dabei jeweils die 10 nm-Goldpartikel Farbstoffmoleküle in ihrer Beschichtung. Die Interpretation der Messdaten wurde durch numerische Simulationen unterstützt. Nanolinsen zeichnen sich durch eine stufenweise Feldverstärkung aus. Dieser Effekt konnte experimentell bestätigt werden, indem selektiv die 20 nm- oder 60 nm-Partikel von Goldnanolinsen mit Farbstoffen markiert und die resultierenden Raman-Signale verglichen wurden. Ein mit Alkingruppen markiertes Protein ist ortsselektiv in Silbernanolinsen integriert worden. Es war möglich, das für das Alkin charakteristische oberflächenverstärkte Raman-Signal im Spektrum einer einzelnen Nanolinse und damit eines einzelnen Proteins zu beobachten. Bei den Messungen mit Silbernanolinsen sind für amorphe Kohlenstoffspezies charakterstische Hintergrundsignale beobachtet worden. Durch zeitabhängige Messungen konnte gezeigt werden, dass diese Spezies erst in situ gebildet werden. KW - DNA origami KW - gold nanoparticles KW - silver nanoparticles KW - SERS KW - self-assembly KW - plasmonics KW - nanolenses KW - DNA-Origami KW - Goldnanopartikel KW - Silbernanopartikel KW - SERS KW - Selbstassemblierung KW - Plasmonik KW - Nanolinsen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409002 ER - TY - JOUR A1 - Heck, Christian A1 - Prinz, Julia A1 - Dathe, Andre A1 - Merk, Virginia A1 - Stranik, Ondrej A1 - Fritzsche, Wolfgang A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Gold Nanolenses Self-Assembled by DNA Origami JF - ACS Photonics N2 - Nanolenses are self-similar chains of metal nanoparticles, which can theoretically provide extremely high field enhancements. Yet, the complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, DNA origami is used to self-assemble 10, 20, and 60 nm gold nanoparticles as plasmonic gold nanolenses (AuNLs) in solution and in billions of copies. Three different geometrical arrangements are assembled, and for each of the three designs, surface-enhanced Raman scattering (SERS) capabilities of single AuNLs are assessed. For the design which shows the best properties, SERS signals from the two different internal gaps are compared by selectively placing probe dyes. The highest Raman enhancement is found for the gap between the small and medium nanoparticle, which is indicative of a cascaded field enhancement. KW - plasmonics KW - DNA origami KW - SERS KW - nanolenses KW - gold nanoparticles Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.6b00946 SN - 2330-4022 VL - 4 SP - 1123 EP - 1130 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Schmitt, Clemens Nikolaus Zeno A1 - Thünemann, Andreas F. A1 - Prietzel, Claudia Christina A1 - Bargheer, Matias A1 - Koetz, Joachim T1 - Gold nanotriangles with crumble topping and their influence on catalysis and surface-enhanced raman spectroscopy JF - ChemPlusChem N2 - By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)-stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5 +/- 1 nm and an edge length of about 175 +/- 17 nm, the AOT bilayer is replaced by a polymeric HA-layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA-shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4 '-dimercaptoazobenzene in a yield of up to 50 %. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing. KW - gold nanostructures KW - HRTEM KW - hyaluronic acid KW - monolayer formation KW - SERS Y1 - 2020 U6 - https://doi.org/10.1002/cplu.201900745 SN - 2192-6506 VL - 85 IS - 3 SP - 519 EP - 526 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Dutta, Anushree A1 - Schürmann, Robin A1 - Kogikoski Junior, Sergio A1 - Mueller, Niclas S. A1 - Reich, Stephanie A1 - Bald, Ilko T1 - Kinetics and mechanism of plasmon-driven dehalogenation reaction of brominated purine nucleobases on Ag and Au JF - ACS catalysis / American Chemical Society N2 - Plasmon-driven photocatalysis is an emerging and promising application of noble metal nanoparticles (NPs). An understanding of the fundamental aspects of plasmon interaction with molecules and factors controlling their reaction rate in a heterogeneous system is of high importance. Therefore, the dehalogenation kinetics of 8-bromoguanine (BrGua) and 8-bromoadenine (BrAde) on aggregated surfaces of silver (Ag) and gold (Au) NPs have been studied to understand the reaction kinetics and the underlying reaction mechanism prevalent in heterogeneous reaction systems induced by plasmons monitored by surface enhanced Raman scattering (SERS). We conclude that the time-average constant concentration of hot electrons and the time scale of dissociation of transient negative ions (TNI) are crucial in defining the reaction rate law based on a proposed kinetic model. An overall higher reaction rate of dehalogenation is observed on Ag compared with Au, which is explained by the favorable hot-hole scavenging by the reaction product and the byproduct. We therefore arrive at the conclusion that insufficient hole deactivation could retard the reaction rate significantly, marking itself as rate-determining step for the overall reaction. The wavelength dependency of the reaction rate normalized to absorbed optical power indicates the nonthermal nature of the plasmon-driven reaction. The study therefore lays a general approach toward understanding the kinetics and reaction mechanism of a plasmon-driven reaction in a heterogeneous system, and furthermore, it leads to a better understanding of the reactivity of brominated purine derivatives on Ag and Au, which could in the future be exploited, for example, in plasmon-assisted cancer therapy. KW - hot-electrons KW - plasmon-driven catalysis KW - fractal kinetics KW - brominated KW - purines KW - SERS KW - hole scavengers Y1 - 2021 U6 - https://doi.org/10.1021/acscatal.1c01851 SN - 2155-5435 VL - 11 IS - 13 SP - 8370 EP - 8381 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Gupta, Banshi D. A1 - Pathak, Anisha A1 - Shrivastav, Anand T1 - Optical Biomedical Diagnostics Using Lab-on-Fiber Technology BT - a review JF - Photonics : open access journal N2 - Point-of-care and in-vivo bio-diagnostic tools are the current need for the present critical scenarios in the healthcare industry. The past few decades have seen a surge in research activities related to solving the challenges associated with precise on-site bio-sensing. Cutting-edge fiber optic technology enables the interaction of light with functionalized fiber surfaces at remote locations to develop a novel, miniaturized and cost-effective lab on fiber technology for bio-sensing applications. The recent remarkable developments in the field of nanotechnology provide innumerable functionalization methodologies to develop selective bio-recognition elements for label free biosensors. These exceptional methods may be easily integrated with fiber surfaces to provide highly selective light-matter interaction depending on various transduction mechanisms. In the present review, an overview of optical fiber-based biosensors has been provided with focus on physical principles used, along with the functionalization protocols for the detection of various biological analytes to diagnose the disease. The design and performance of these biosensors in terms of operating range, selectivity, response time and limit of detection have been discussed. In the concluding remarks, the challenges associated with these biosensors and the improvement required to develop handheld devices to enable direct target detection have been highlighted. KW - fiber optic sensors KW - synthesis KW - interferometry KW - fluorescence KW - SERS KW - SPR KW - immunosensors KW - enzymatic sensors KW - molecular imprinted polymers Y1 - 2022 U6 - https://doi.org/10.3390/photonics9020086 SN - 2304-6732 VL - 9 IS - 2 PB - MDPI CY - Basel ER -